Claude Code Plugins

Community-maintained marketplace

Feedback
317
0

AI Engine Optimization - semantic triples, page templates, content clusters for AI citations

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name aeo-optimization
description AI Engine Optimization - semantic triples, page templates, content clusters for AI citations

AI Engine Optimization (AEO) Skill

Load with: base.md + web-content.md + site-architecture.md

Purpose: Optimize content for AI engines (ChatGPT, Claude, Perplexity, Google AI Overviews) so your brand gets cited in AI-generated answers.

Source: Based on HubSpot's AEO Guide and industry best practices.


Why AEO Matters Now

┌────────────────────────────────────────────────────────────────┐
│  THE GREAT DECOUPLING                                          │
│  ────────────────────────────────────────────────────────────  │
│  Impressions ≠ Clicks anymore.                                 │
│  AI engines compile answers from multiple sources.             │
│  More buyer journey happens inside chat experiences.           │
│  58% of Google searches = zero clicks (AI overviews).          │
├────────────────────────────────────────────────────────────────┤
│  THE OPPORTUNITY                                               │
│  ────────────────────────────────────────────────────────────  │
│  Shape what AI engines say about your category and product.    │
│  Get cited as the authoritative source.                        │
│  Best answer > Best page ranking.                              │
└────────────────────────────────────────────────────────────────┘

Key Stats:

  • 70% of consumers use ChatGPT for searches
  • 47% of Google queries show AI overviews
  • Average ChatGPT prompt: 23 words (vs 4.2 for Google)
  • AEO market: $886M (2024) → $7.3B (2031)

How AI Engines Choose Answers

AI engines use three main signals to select content for answers:

1. Consensus

Facts that appear across multiple credible sources get trusted and reused.

How to build consensus:

  • Repeat key facts consistently across your own pages
  • Use same terminology as industry leaders
  • Link to and from authoritative external sources
  • Create internal content clusters that reinforce each other

2. Information Gain

Net-new insight beats generic advice. AI engines prefer content that adds value.

How to add information gain:

  • Original research and data
  • Concrete examples with specifics
  • Clear point of view (not fence-sitting)
  • Expert quotes with credentials
  • Case studies with metrics

3. Entities & Structure

Clear entities and tidy structure reduce ambiguity and boost quotability.

How to optimize structure:

  • Use semantic triples (Subject → Verb → Object)
  • Clear headings with entity names
  • Schema markup (Article, FAQ, Product)
  • Short, scannable paragraphs (2-4 sentences)

Semantic Triples (Critical for AEO)

What they are: Compact facts that AI engines (and humans) can't misread.

Pattern: [Subject] [verb] [object].

Examples

✅ GOOD (clear triples):
- HubSpot CRM syncs contact and company data.
- Lead Scoring assigns priority based on engagement.
- Workflows trigger email sequences from events.

❌ BAD (vague, no clear entity):
- The system helps with various tasks.
- It can do many things for users.
- This improves overall performance.

Triple Checklist

For every key claim, ask:

  • Is the subject a clear entity (product, feature, brand)?
  • Is the verb specific and active?
  • Is the object concrete and measurable?

Paragraph Pattern (Feature → How → Outcome)

Every substantive paragraph should follow this structure:

[Feature] helps [User/Role] with [Job].
It [mechanism/inputs] to [process].
Teams see [metric/result] in [timeframe/context].

Triples:
- [Subject] [verb] [object].
- [Subject] [verb] [object].

Example

Lead Scoring helps sales teams prioritize prospects. It combines
page views, email engagement, and firmographic data to assign a
numeric score, then auto-enrolls high scorers into follow-up
sequences. Reps focus on qualified accounts and book 40% more
meetings.

- Lead Scoring assigns scores from engagement data.
- High scorers trigger automated follow-up sequences.

Page Templates

Template 1: Category Explainer

Goal: Define the category, tie it to your product, earn citations.

# What is [Category]? — [1-2 line value promise]

## What is [Category]? (~80 words)
[Plain definition in everyday language. Name adjacent entities.]

Triples:
1. [Subject] [verb] [object].
2. [Subject] [verb] [object].

## Why it matters now (~60 words)
[One paragraph. Mention shift to answers over links; tie to buyer outcomes.]

## How to apply it (3-5 bullets)
- [Action 1]
- [Action 2]
- [Action 3]

## FAQ
**Q: [Question]?**
A: [~1 sentence answer]

**Q: [Question]?**
A: [~1 sentence answer]

**Q: [Question]?**
A: [~1 sentence answer]

---
**Links:** [Category hub] | [Product/Feature] | [Credible source 1] | [Credible source 2]
**CTA:** [Demo / Template / Signup]
**Schema:** Article + FAQ. Author + last updated.

Template 2: Product & Feature Page

Goal: Clarify capability, fit, and next step; reinforce category linkage.

# [Product/Feature] — [Outcome in 3-5 words]

**[Product/Feature] enables [Outcome] for [User/Role].**

## [Feature Area 1]
[2-4 sentences using Feature → How → Outcome]

Triples:
1. [Subject] [verb] [object].
2. [Subject] [verb] [object].

## [Feature Area 2]
[2-4 sentences using Feature → How → Outcome]

Triples:
1. [Subject] [verb] [object].
2. [Subject] [verb] [object].

## [Feature Area 3]
[2-4 sentences using Feature → How → Outcome]

Triples:
1. [Subject] [verb] [object].
2. [Subject] [verb] [object].

## FAQ
**Q: [Question]?**
A: [~1 sentence]

**Q: [Question]?**
A: [~1 sentence]

**Q: [Question]?**
A: [~1 sentence]

---
**Links:** Back to [Category Explainer] | Forward to [Demo/Trial]
**Proof:** [Benchmark/Analyst/Customer proof]
**Notes:** Requirements/limits (pricing tier, integrations)
**Schema:** Article + FAQ. Author + last updated.

Template 3: Comparison / Alternatives Page

Goal: Help readers decide with clear criteria; earn fair citations.

# [Product] vs. [Alternative] — Which fits [Use case]?

## Comparison Table

| Criterion | [Product] | [Alt A] | [Alt B] | Source |
|-----------|-----------|---------|---------|--------|
| [Feature/Limit] | [value] | [value] | [value] | [link] |
| [Requirement] | [value] | [value] | [value] | [link] |
| [Best for] | [value] | [value] | [value] | [link] |

*Source-back all claims in the table or footnotes.*

## Fit Statements

1. **[Product]** suits [Team/Use case] when [Condition].
2. **[Alt A]** fits [Team/Use case] when [Condition].
3. **[Alt B]** works for [Team/Use case] when [Condition].

---
**Links:** [Category Explainer] | [Feature pages]
**CTA:** [Try / Demo / Talk to Sales]
**Schema:** Article. Author + last updated.

Template 4: Use Case / Industry Page

Goal: Connect product to outcomes in a context readers recognize.

# [Industry/Use Case] — [Outcome KPI]

**Teams reduce [Metric] by [Y%] in [Timeframe].**

## Mini Case Study
[Company/Role] used [Product/Feature] to [Action], resulting in
[Metric improvement] within [Timeframe].

## How It Works

### [Feature 1]
[Feature → How → Outcome paragraph]

Triples:
1. [Subject] [verb] [object].
2. [Subject] [verb] [object].

### [Feature 2]
[Feature → How → Outcome paragraph]

Triples:
1. [Subject] [verb] [object].
2. [Subject] [verb] [object].

## Who Uses This
**Roles:** [Role 1], [Role 2], [Role 3]
**Workflows:** [Workflow 1], [Workflow 2]
**Integrations:** [Integration 1], [Integration 2]

---
**Links:** [Product/Feature pages] | [Supporting blog]
**CTA:** [Industry template / Demo variant]
**Schema:** Article. Author + last updated.

Template 5: Supporting Blog Post

Goal: Add information gain and support your content cluster.

# [Topic] — [Specific promise]

## Opening (~60-80 words)
[State the problem. Align terminology with Category Explainer. Preview outcome.]

## [Section 1 Heading] (~120 words max)
[Feature → How → Outcome]

Triples:
1. [Subject] [verb] [object].
2. [Subject] [verb] [object].

**Internal link:** [Related page]
**External citation:** [Credible source]

## [Section 2 Heading] (~120 words max)
[Feature → How → Outcome]

Triples:
1. [Subject] [verb] [object].
2. [Subject] [verb] [object].

**Internal link:** [Related page]
**External citation:** [Credible source]

## Key Takeaway
[1-2 lines summarizing the main point]

**CTA:** [Single primary action]

---
**Schema:** Article. Author + last updated.

Site-Wide Trust Signals

Required on Every Page

Element Implementation
Schema markup Article + FAQ (if FAQ exists)
Author attribution Name, bio, credentials, photo
Last updated date Visible, machine-readable
Internal links 3-5 per page (upstream/downstream)
External citations 1-2 credible sources per section
Single CTA Demo, template, or signup (repeated once near end)

Schema Implementation

<!-- Article Schema -->
<script type="application/ld+json">
{
  "@context": "https://schema.org",
  "@type": "Article",
  "headline": "[Page Title]",
  "author": {
    "@type": "Person",
    "name": "[Author Name]",
    "url": "[Author Bio URL]"
  },
  "datePublished": "[ISO Date]",
  "dateModified": "[ISO Date]",
  "publisher": {
    "@type": "Organization",
    "name": "[Company]",
    "logo": "[Logo URL]"
  }
}
</script>

<!-- FAQ Schema (if FAQ section exists) -->
<script type="application/ld+json">
{
  "@context": "https://schema.org",
  "@type": "FAQPage",
  "mainEntity": [
    {
      "@type": "Question",
      "name": "[Question 1]",
      "acceptedAnswer": {
        "@type": "Answer",
        "text": "[Answer 1]"
      }
    },
    {
      "@type": "Question",
      "name": "[Question 2]",
      "acceptedAnswer": {
        "@type": "Answer",
        "text": "[Answer 2]"
      }
    }
  ]
}
</script>

Content Cluster Architecture

                    ┌─────────────────────┐
                    │  Category Explainer │
                    │   "What is AEO?"    │
                    └──────────┬──────────┘
                               │
        ┌──────────────────────┼──────────────────────┐
        │                      │                      │
        ▼                      ▼                      ▼
┌───────────────┐    ┌───────────────┐    ┌───────────────┐
│ Product Page  │    │ Product Page  │    │ Product Page  │
│  "Feature A"  │    │  "Feature B"  │    │  "Feature C"  │
└───────┬───────┘    └───────┬───────┘    └───────┬───────┘
        │                    │                    │
        ▼                    ▼                    ▼
┌───────────────┐    ┌───────────────┐    ┌───────────────┐
│  Blog Post    │    │  Use Case     │    │  Comparison   │
│  (supports)   │    │  (industry)   │    │  (vs. alt)    │
└───────────────┘    └───────────────┘    └───────────────┘

Linking Rules:

  • Category Explainer links DOWN to all product pages
  • Product pages link UP to Category Explainer
  • Product pages link ACROSS to related features
  • Blog posts link UP to Product pages
  • Comparison pages link to Category Explainer + relevant Product pages

AEO Writing Checklist

Per-Paragraph Checklist

  • Follows Feature → How → Outcome pattern
  • Contains 2-4 sentences (scannable)
  • Includes 1-2 semantic triples
  • Names specific entities (not vague "it" or "this")
  • Uses active voice verbs

Per-Section Checklist

  • Has 1 internal link (upstream or downstream)
  • Has 1 external citation (credible source)
  • Section heading names an entity
  • ~120 words max

Per-Page Checklist

  • H1 contains primary entity + value promise
  • Opening claim is a semantic triple
  • 3-5 internal links total
  • 1-2 external citations total
  • Mini-FAQ with 3 questions (if applicable)
  • Single primary CTA
  • Schema markup (Article + FAQ)
  • Author name + bio link
  • Last updated date visible

Site-Wide Checklist

  • Category Explainer exists for each key category
  • Product pages link back to Category Explainer
  • Content cluster architecture documented
  • Author bio pages exist with credentials
  • Consistent terminology across all pages

Measuring AEO Success

Key Metrics

Metric How to Track
AI citations Manual checks in ChatGPT, Claude, Perplexity
Brand mentions in AI Search "[brand] + [category]" in AI engines
Share of answer How often you're cited vs competitors
LLM traffic GA4 referral from chatgpt.com, claude.ai, perplexity.ai
Impressions-to-clicks gap GSC impressions vs actual clicks

Tools

  • HubSpot AEO Grader - Grade your brand's AI visibility
  • Google Analytics 4 - Track LLM referral traffic
  • Google Search Console - Monitor impressions vs clicks gap
  • Manual AI queries - Regularly test your brand in AI engines

Common AEO Mistakes

Mistake Fix
Vague language ("it helps with things") Use specific entities and triples
No clear structure Use Feature → How → Outcome
Missing schema Add Article + FAQ schema
No author attribution Add author name, bio, credentials
Generic content Add original data, examples, POV
Orphan pages Link into content cluster
Fence-sitting ("it depends") Take a clear position
No external citations Add 1-2 credible sources per section

AEO vs Traditional SEO

Aspect Traditional SEO AEO
Goal Rank on page 1 Get cited in AI answers
Success metric Click-through rate Share of answer
Content focus Keywords Entities + facts
Structure Headers for scanning Triples for extraction
Links Backlinks for authority Citations for consensus
Updates Periodic refresh Continuous accuracy

Quick Reference

Semantic Triple Pattern

[Entity/Product] [active verb] [concrete object/result].

Paragraph Pattern

[Feature] helps [User] with [Job].
It [mechanism] to [process].
Teams see [result] in [timeframe].

Page Minimums

  • 3-5 internal links
  • 1-2 external citations per section
  • 3 FAQ questions with schema
  • Author + last updated
  • Single CTA

Content Hierarchy

  1. Category Explainer (top)
  2. Product/Feature pages (middle)
  3. Use case / Comparison / Blog (supporting)