Tech Stack Recommender
Provides structured recommendations for technology stack selection based on project requirements, team constraints, and business goals.
When to Use
- Starting a new project and need stack recommendations
- Evaluating technology options for specific use cases
- Comparing frameworks or languages for a project
- Assessing team readiness for a technology choice
- Planning technology migrations
Stack Selection Framework
Decision Inputs
┌───────────────────────────────────────────────────────────────────┐
│ STACK SELECTION INPUTS │
├───────────────────────────────────────────────────────────────────┤
│ │
│ Project Requirements Team Factors Business Constraints│
│ ──────────────────── ──────────── ────────────────── │
│ • Scale expectations • Current skills • Time to market │
│ • Performance needs • Learning capacity • Budget │
│ • Integration points • Team size • Hiring market │
│ • Compliance/Security • Experience level • Long-term support │
│ │
└───────────────────────────────────────────────────────────────────┘
│
▼
┌─────────────────┐
│ RECOMMENDATION │
│ Framework │
└─────────────────┘
Quick Stack Recommendations
By Project Type
| Project Type |
Frontend |
Backend |
Database |
Why |
| SaaS MVP |
Next.js |
Node.js/Express |
PostgreSQL |
Fast iteration, full-stack JS |
| E-commerce |
Next.js |
Node.js or Python |
PostgreSQL + Redis |
SEO, caching, transactions |
| Mobile App |
React Native |
Node.js/Python |
PostgreSQL |
Cross-platform, shared logic |
| Real-time App |
React |
Node.js + WebSocket |
PostgreSQL + Redis |
Event-driven, low latency |
| Data Platform |
React |
Python/FastAPI |
PostgreSQL + ClickHouse |
Data processing, analytics |
| Enterprise |
React |
Java/Spring or .NET |
PostgreSQL/Oracle |
Stability, enterprise support |
| ML Product |
React |
Python/FastAPI |
PostgreSQL + Vector DB |
ML ecosystem, inference |
By Team Profile
| Team Profile |
Recommended Stack |
Avoid |
| Full-stack JS |
Next.js, Node.js, PostgreSQL |
Go, Rust (learning curve) |
| Python Background |
FastAPI, React, PostgreSQL |
Heavy frontend frameworks |
| Enterprise Java |
Spring Boot, React, PostgreSQL |
Bleeding-edge tech |
| Startup (Speed) |
Next.js, Supabase/Firebase |
Complex microservices |
| Scale-Up |
React, Go/Node, PostgreSQL |
Monolithic frameworks |
Technology Comparison Tables
Frontend Frameworks
| Framework |
Best For |
Learning Curve |
Ecosystem |
Hiring |
| React |
Complex UIs, SPAs |
Medium |
Excellent |
Easy |
| Next.js |
Full-stack, SSR, SEO |
Medium |
Excellent |
Easy |
| Vue.js |
Simpler apps, gradual adoption |
Easy |
Good |
Medium |
| Svelte |
Performance-critical |
Easy |
Growing |
Hard |
| Angular |
Enterprise, large teams |
Hard |
Good |
Medium |
React vs Vue vs Angular
Speed to MVP Long-term Maint Enterprise Ready
React ████████░░ ████████░░ █████████░
Vue █████████░ ███████░░ ██████░░░░
Angular ██████░░░░ █████████░ ██████████
Backend Frameworks
| Framework |
Language |
Best For |
Performance |
Ecosystem |
| Express |
Node.js |
APIs, real-time |
Good |
Excellent |
| Fastify |
Node.js |
High-performance APIs |
Excellent |
Good |
| FastAPI |
Python |
ML APIs, async |
Excellent |
Good |
| Django |
Python |
Full-featured apps |
Good |
Excellent |
| Spring Boot |
Java |
Enterprise |
Good |
Excellent |
| Go (Gin/Echo) |
Go |
High performance |
Excellent |
Good |
| Rails |
Ruby |
Rapid prototyping |
Moderate |
Good |
| NestJS |
TypeScript |
Structured Node apps |
Good |
Good |
When to Use What
## Node.js (Express/Fastify/NestJS)
✅ Real-time applications (WebSocket)
✅ I/O-heavy workloads
✅ Full-stack JavaScript teams
✅ Microservices
❌ CPU-intensive tasks
❌ Heavy computation
## Python (FastAPI/Django)
✅ ML/Data Science integration
✅ Rapid prototyping
✅ Data processing pipelines
✅ Scientific computing
❌ High-concurrency I/O
❌ Real-time systems
## Go
✅ High-performance services
✅ System programming
✅ Concurrent workloads
✅ Microservices at scale
❌ Rapid prototyping
❌ Complex ORM needs
## Java (Spring Boot)
✅ Enterprise applications
✅ Complex business logic
✅ Transaction-heavy systems
✅ Large teams
❌ Quick MVPs
❌ Small projects
Databases
| Database |
Type |
Best For |
Scale |
Complexity |
| PostgreSQL |
Relational |
General purpose, ACID |
High |
Medium |
| MySQL |
Relational |
Web apps, read-heavy |
High |
Low |
| MongoDB |
Document |
Flexible schemas, JSON |
High |
Low |
| Redis |
Key-Value |
Caching, sessions |
Very High |
Low |
| Elasticsearch |
Search |
Full-text search |
High |
Medium |
| ClickHouse |
Columnar |
Analytics, time-series |
Very High |
Medium |
| DynamoDB |
Key-Value |
Serverless, AWS |
Very High |
Medium |
| Cassandra |
Wide-column |
Write-heavy, distributed |
Very High |
High |
Database Selection Guide
Need ACID transactions?
├── YES → PostgreSQL
│
└── NO → What's your primary use case?
├── General purpose → PostgreSQL (still!)
├── Document storage → MongoDB
├── Caching → Redis
├── Search → Elasticsearch
├── Analytics → ClickHouse/BigQuery
├── Time-series → TimescaleDB/InfluxDB
└── Key-value at scale → DynamoDB/Cassandra
Infrastructure
| Platform |
Best For |
Complexity |
Cost |
| Vercel |
Next.js, frontend |
Very Low |
$ - $$ |
| Railway |
Simple deployments |
Low |
$ - $$ |
| Render |
General apps |
Low |
$ - $$ |
| AWS |
Everything, scale |
High |
$ - $$$$ |
| GCP |
ML/Data, Kubernetes |
High |
$ - $$$$ |
| Azure |
Enterprise, .NET |
High |
$ - $$$$ |
| DigitalOcean |
Simple, affordable |
Low |
$ |
| Fly.io |
Edge, global |
Medium |
$ - $$ |
Stack Templates
Template 1: Modern SaaS Startup
┌──────────────────────────────────────────────────────────────────┐
│ MODERN SAAS STACK │
├──────────────────────────────────────────────────────────────────┤
│ │
│ FRONTEND BACKEND DATABASE │
│ ───────── ─────── ──────── │
│ Next.js 14 Node.js/Express PostgreSQL │
│ TypeScript TypeScript Prisma ORM │
│ Tailwind CSS REST/GraphQL Redis (cache) │
│ │
│ INFRASTRUCTURE AUTH PAYMENTS │
│ ────────────── ──── ──────── │
│ Vercel Clerk/Auth0 Stripe │
│ AWS S3 NextAuth Stripe Billing │
│ Cloudflare CDN │
│ │
│ MONITORING CI/CD ANALYTICS │
│ ────────── ───── ───────── │
│ Sentry GitHub Actions PostHog/Amplitude │
│ Datadog Vercel Preview Mixpanel │
│ │
└──────────────────────────────────────────────────────────────────┘
Best for: B2B SaaS, 0-1M users
Team size: 2-10 engineers
Time to MVP: 4-8 weeks
Template 2: E-Commerce Platform
┌──────────────────────────────────────────────────────────────────┐
│ E-COMMERCE STACK │
├──────────────────────────────────────────────────────────────────┤
│ │
│ FRONTEND BACKEND DATABASE │
│ ───────── ─────── ──────── │
│ Next.js (SSR) Node.js/Python PostgreSQL │
│ TypeScript GraphQL/REST Redis │
│ Tailwind/Styled Medusa/Custom Elasticsearch │
│ │
│ PAYMENTS SHIPPING INVENTORY │
│ ──────── ──────── ───────── │
│ Stripe ShipStation Custom/ERP │
│ PayPal EasyPost Webhook sync │
│ │
│ CDN SEARCH QUEUE │
│ ─── ────── ───── │
│ CloudFront Algolia/Elastic SQS/BullMQ │
│ Cloudflare Typesense Redis │
│ │
└──────────────────────────────────────────────────────────────────┘
Best for: D2C, Marketplace
Team size: 5-20 engineers
Time to MVP: 8-16 weeks
Template 3: ML-Powered Product
┌──────────────────────────────────────────────────────────────────┐
│ ML PRODUCT STACK │
├──────────────────────────────────────────────────────────────────┤
│ │
│ FRONTEND API ML SERVING │
│ ───────── ─── ────────── │
│ React/Next.js FastAPI TorchServe/Triton │
│ TypeScript Python Docker/K8s │
│ Pydantic ONNX Runtime │
│ │
│ DATABASE VECTOR DB FEATURE STORE │
│ ──────── ───────── ───────────── │
│ PostgreSQL Pinecone Feast │
│ Redis Weaviate Redis │
│ pgvector │
│ │
│ ML OPS TRAINING MONITORING │
│ ───── ──────── ────────── │
│ MLflow SageMaker Weights & Biases │
│ Airflow Vertex AI Prometheus/Grafana │
│ │
└──────────────────────────────────────────────────────────────────┘
Best for: AI products, recommendation systems
Team size: 5-15 engineers + ML team
Time to MVP: 12-24 weeks
Template 4: Real-Time Application
┌──────────────────────────────────────────────────────────────────┐
│ REAL-TIME STACK │
├──────────────────────────────────────────────────────────────────┤
│ │
│ FRONTEND BACKEND REAL-TIME │
│ ───────── ─────── ───────── │
│ React Node.js Socket.io │
│ TypeScript Express/Fastify WebSocket │
│ TypeScript Redis Pub/Sub │
│ │
│ DATABASE CACHE MESSAGE QUEUE │
│ ──────── ───── ───────────── │
│ PostgreSQL Redis Redis Streams │
│ Prisma In-memory Kafka (scale) │
│ │
│ PRESENCE STATE SYNC CONFLICT RESOLUTION │
│ ──────── ────────── ─────────────────── │
│ Redis CRDT/OT Yjs/Automerge │
│ Custom LiveBlocks Custom │
│ │
└──────────────────────────────────────────────────────────────────┘
Best for: Chat, collaboration, gaming
Team size: 5-15 engineers
Time to MVP: 8-16 weeks
Technology Trade-off Analysis
Language Selection Matrix
| Factor |
JavaScript/TS |
Python |
Go |
Java |
Rust |
| Learning Curve |
Low |
Low |
Medium |
Medium |
High |
| Ecosystem |
Excellent |
Excellent |
Good |
Excellent |
Growing |
| Performance |
Good |
Moderate |
Excellent |
Good |
Excellent |
| Hiring Pool |
Large |
Large |
Medium |
Large |
Small |
| Type Safety |
TS: Good |
Optional |
Excellent |
Excellent |
Excellent |
| Memory Safety |
GC |
GC |
GC |
GC |
Compile-time |
Framework Selection Criteria
## Evaluation Checklist
1. **Team Expertise** (Weight: 30%)
- Current skills alignment?
- Learning curve acceptable?
- Training resources available?
2. **Project Requirements** (Weight: 30%)
- Performance requirements met?
- Feature set complete?
- Scalability path clear?
3. **Ecosystem** (Weight: 20%)
- Package availability?
- Community size?
- Third-party integrations?
4. **Long-term Viability** (Weight: 20%)
- Active maintenance?
- Corporate backing?
- Future roadmap?
Anti-Patterns to Avoid
Technology Selection Red Flags
| Anti-Pattern |
Why It's Bad |
Better Approach |
| Resume-Driven |
Choosing tech for career, not project |
Match to requirements |
| Hype-Driven |
Picking latest without evaluation |
Proven over trendy |
| Comfort-Only |
Only familiar tech even when unsuitable |
Evaluate objectively |
| Over-Engineering |
Complex stack for simple needs |
Start simple |
| Under-Engineering |
Simple tools for complex needs |
Plan for growth |
Common Mistakes
❌ "Let's use microservices from day one"
→ Start monolith, extract later
❌ "We need Kubernetes for our 3-person startup"
→ Use managed platforms (Vercel, Railway)
❌ "MongoDB because NoSQL is modern"
→ PostgreSQL handles 95% of use cases better
❌ "GraphQL for everything"
→ REST is simpler for most APIs
❌ "Let's build our own auth"
→ Use Auth0, Clerk, or established solutions
Migration Considerations
When to Consider Migration
| Trigger |
Action |
| Performance bottlenecks |
Profile first, then consider |
| Team expertise mismatch |
Train or hire before migrating |
| End of life/support |
Plan 6-12 months ahead |
| Scale limitations |
Validate limits with benchmarks |
| Security vulnerabilities |
Patch if possible, migrate if not |
Migration Risk Assessment
LOW RISK:
- Library/package updates
- Minor version upgrades
- Adding new services
MEDIUM RISK:
- Database version upgrades
- Framework major versions
- New deployment platform
HIGH RISK:
- Language/framework rewrites
- Database technology changes
- Monolith to microservices
Quick Reference
"I'm building a..."
| Project |
Recommended Stack |
| Blog/CMS |
Next.js + Headless CMS (Sanity/Contentful) |
| SaaS Dashboard |
Next.js + Node.js + PostgreSQL |
| Mobile App |
React Native + Node.js + PostgreSQL |
| E-commerce |
Next.js + Medusa/Custom + PostgreSQL |
| Real-time Chat |
React + Node.js + Socket.io + Redis |
| Data Dashboard |
React + Python/FastAPI + PostgreSQL |
| ML Product |
React + Python/FastAPI + PostgreSQL + Vector DB |
| API Service |
Node.js or Python + PostgreSQL |
Stack Complexity Levels
| Complexity |
Description |
Example Stack |
| Minimal |
Single deployment, managed services |
Vercel + Supabase |
| Simple |
Separate frontend/backend |
Vercel + Railway + PostgreSQL |
| Standard |
Multiple services, caching |
AWS ECS + RDS + Redis |
| Complex |
Microservices, event-driven |
K8s + Multiple DBs + Kafka |
References