Claude Code Plugins

Community-maintained marketplace

Feedback

data-cleaning-standards

@alongor666/daylyreport
0
0

Clean and standardize vehicle insurance CSV/Excel data. Use when handling missing values, fixing data formats, removing duplicates, or standardizing fields. Mentions "clean data", "handle nulls", "standardize", "duplicates", or "normalize".

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name data-cleaning-standards
description Clean and standardize vehicle insurance CSV/Excel data. Use when handling missing values, fixing data formats, removing duplicates, or standardizing fields. Mentions "clean data", "handle nulls", "standardize", "duplicates", or "normalize".
allowed-tools Read, Edit, Grep, Glob

Data Cleaning Standards

Clean and standardize vehicle insurance data following established business rules.

When to Activate

Use this skill when the user:

  • Says "clean the data" or "standardize data"
  • Mentions "missing values", "null handling", or "fill missing"
  • Asks "remove duplicates" or "deduplicate"
  • Wants to "normalize dates" or "standardize formats"
  • Mentions data preparation or preprocessing

Quick Start Workflow

Step 1: Handle Missing Values
  ↓
Step 2: Remove Duplicates
  ↓
Step 3: Standardize Formats
  ↓
Step 4: Handle Outliers

Step 1: Handle Missing Values

1.1 Missing Value Strategy by Field Type

Field Type Strategy Fill Value Why
三级机构 Lookup from mapping From mapping table Authoritative source
团队简称 Keep null '' (empty string) Optional field
签单/批改保费 Delete row N/A Critical metric
手续费含税 Fill zero 0 Legitimate zero commission
是否续保 Keep null '' Display as "Unknown"
String fields Fill empty '' Avoid None errors
Numeric fields Delete or 0 Depends on field Case by case

1.2 Implementation

def handle_missing_values(df, staff_mapping):
    """Apply missing value strategy"""

    # 1. 三级机构 - lookup from mapping
    if '三级机构' in df.columns:
        for idx in df[df['三级机构'].isnull()].index:
            staff = df.at[idx, '业务员']
            mapped_info = lookup_staff_info(staff, staff_mapping)
            if mapped_info:
                df.at[idx, '三级机构'] = mapped_info['三级机构']

    # 2. 手续费 - fill zero
    if '手续费含税' in df.columns:
        df['手续费含税'] = df['手续费含税'].fillna(0)

    # 3. 签单保费 - delete missing rows
    before = len(df)
    df = df[df['签单/批改保费'].notnull()]
    after = len(df)
    if before > after:
        print(f"Deleted {before - after} rows with missing premium")

    # 4. String fields - fill empty
    string_cols = df.select_dtypes(include=['object']).columns
    df[string_cols] = df[string_cols].fillna('')

    return df

Step 2: Remove Duplicates

2.1 Deduplication Rules

Composite Key: 保单号 + 投保确认时间

Keep Strategy: keep='last' (most recent record)

Why: Same policy may have multiple updates (批改)

2.2 Implementation

def remove_duplicates(df):
    """Remove duplicate records"""

    # Ensure date is datetime
    df['投保确认时间'] = pd.to_datetime(df['投保确认时间'], errors='coerce')

    # Use duplicated() to avoid type issues
    before = len(df)
    dup_mask = df.duplicated(subset=['保单号', '投保确认时间'], keep='last')
    df = df[~dup_mask]
    after = len(df)

    if before > after:
        print(f"Removed {before - after} duplicates")

    return df

Step 3: Standardize Formats

3.1 Date Standardization

Target Format: datetime64[ns]

def standardize_dates(df):
    """Convert all date fields to datetime"""
    date_cols = ['刷新时间', '投保确认时间', '保险起期']

    for col in date_cols:
        if col in df.columns:
            df[col] = pd.to_datetime(df[col], errors='coerce')
            invalid = df[col].isnull().sum()
            if invalid > 0:
                print(f"⚠️  {col}: {invalid} invalid dates converted to NaT")

    return df

3.2 Numeric Standardization

Target Format: float64

def standardize_numerics(df):
    """Convert numeric fields to float"""
    numeric_cols = ['签单/批改保费', '签单数量', '手续费', '手续费含税', '增值税']

    for col in numeric_cols:
        if col in df.columns:
            df[col] = pd.to_numeric(df[col], errors='coerce')

    return df

3.3 String Standardization

Rules:

  • Strip leading/trailing whitespace
  • Map variations (Y/N → 是/否)
def standardize_strings(df):
    """Clean string fields"""

    # Strip whitespace
    string_cols = df.select_dtypes(include=['object']).columns
    for col in string_cols:
        df[col] = df[col].astype(str).str.strip()

    # Standardize yes/no fields
    yes_no_cols = ['是否续保', '是否新能源', '是否过户车', '是否异地车']
    for col in yes_no_cols:
        if col in df.columns:
            df[col] = df[col].map({
                'Y': '是', 'N': '否',
                'y': '是', 'n': '否',
                '1': '是', '0': '否'
            }).fillna(df[col])

    return df

Step 4: Handle Outliers

4.1 Outlier Detection Rules

Important: NEVER delete negative premiums (legitimate business data)

Outlier Type Detection Rule Action
Negative premium < 0 KEEP (refunds/adjustments)
Extreme premium < -1M or > 100K ⚠️ Flag only
Zero commission == 0 ✅ KEEP (normal)
Negative amount 保额 < 0 ⚠️ Flag only

4.2 Implementation

def detect_outliers(df):
    """Detect outliers but DO NOT delete"""
    outliers = {}

    # 1. Extreme premium (flag only)
    if '签单/批改保费' in df.columns:
        extreme = df[
            (df['签单/批改保费'] < -1000000) |
            (df['签单/批改保费'] > 100000)
        ]
        if len(extreme) > 0:
            outliers['extreme_premium'] = {
                'count': len(extreme),
                'samples': extreme['保单号'].head(5).tolist()
            }

    # 2. Negative amounts (flag only)
    if '签单/批改保额' in df.columns:
        negative_amt = df[df['签单/批改保额'] < 0]
        if len(negative_amt) > 0:
            outliers['negative_amount'] = {
                'count': len(negative_amt),
                'samples': negative_amt['保单号'].head(5).tolist()
            }

    # Report outliers without deleting
    if outliers:
        print("⚠️  Detected outliers (kept in data):")
        for key, info in outliers.items():
            print(f"  - {key}: {info['count']} records")

    return df, outliers

Critical Rule: Never filter out negative premiums:

# ❌ WRONG - DO NOT DO THIS
df = df[df['签单/批改保费'] > 0]

# ✅ CORRECT - Keep all values
total_premium = df['签单/批改保费'].sum()  # May be negative

Complete Cleaning Pipeline

All-in-One Function

def clean_data(df, staff_mapping):
    """Complete cleaning pipeline"""

    print("Starting data cleaning pipeline...")
    initial_count = len(df)

    # Step 1: Handle missing values
    df = handle_missing_values(df, staff_mapping)
    print(f"✓ Step 1: Handled missing values")

    # Step 2: Remove duplicates
    df = remove_duplicates(df)
    print(f"✓ Step 2: Removed duplicates")

    # Step 3: Standardize formats
    df = standardize_dates(df)
    df = standardize_numerics(df)
    df = standardize_strings(df)
    print(f"✓ Step 3: Standardized formats")

    # Step 4: Detect outliers (no deletion)
    df, outliers = detect_outliers(df)
    print(f"✓ Step 4: Detected outliers")

    final_count = len(df)
    print(f"\nCleaning complete: {initial_count} → {final_count} records")

    return df, outliers

Common Use Cases

Case 1: "Clean my CSV file"

import pandas as pd
import json

# Load data
df = pd.read_csv('data.csv', encoding='utf-8-sig')
mapping = json.load(open('staff_mapping.json'))

# Run full pipeline
df_clean, outliers = clean_data(df, mapping)

# Save cleaned data
df_clean.to_csv('data_cleaned.csv', index=False, encoding='utf-8-sig')

Case 2: "Handle missing institution fields"

# Focus on Step 1 - missing value handling
df = handle_missing_values(df, staff_mapping)

# Check results
missing_before = df_original['三级机构'].isnull().sum()
missing_after = df['三级机构'].isnull().sum()
print(f"Fixed {missing_before - missing_after} missing institutions")

Case 3: "Remove duplicate policies"

# Focus on Step 2 - deduplication
df_unique = remove_duplicates(df)
print(f"Removed {len(df) - len(df_unique)} duplicates")

Cleaning Checklist

Before cleaning:

  • Backup original data
  • Load staff mapping file
  • Check file encoding (use utf-8-sig for Excel exports)

During cleaning:

  • Handle missing values (Step 1)
  • Remove duplicates (Step 2)
  • Standardize formats (Step 3)
  • Detect outliers (Step 4)

After cleaning:

  • Verify record count change is reasonable
  • Check critical fields are complete
  • Review outlier report
  • Save cleaned data with new filename

Troubleshooting

"Many records deleted"

Check: Are you accidentally deleting negative premiums?

# Check negative premium count
negative_count = (df['签单/批改保费'] < 0).sum()
print(f"Negative premiums: {negative_count} (should be kept)")

"Date conversion creates many NaT"

Solution: Check date format

# Inspect date column
print(df['投保确认时间'].head())

# Try different format
df['投保确认时间'] = pd.to_datetime(
    df['投保确认时间'],
    format='%Y/%m/%d',  # Adjust format
    errors='coerce'
)

"Duplicates not removed"

Check: Ensure date column is datetime type

print(df['投保确认时间'].dtype)  # Should be datetime64[ns]

Related Files

Data processor: backend/data_processor.py

  • See _clean_data() method (lines 132-156)
  • See merge_with_existing() method (lines 158-192)

Field definitions: docs/FIELD_MAPPING.md

Related Skills:

  • field-validation - Run this BEFORE cleaning
  • staff-mapping-management - Update mapping table

Skill Version: v1.0 Created: 2025-11-09 File Size: ~310 lines Focuses On: Data cleaning only (not validation or mapping)