Claude Code Plugins

Community-maintained marketplace

Feedback

pydantic-ai-testing

@anderskev/beagle
1
0

Test PydanticAI agents using TestModel, FunctionModel, VCR cassettes, and inline snapshots. Use when writing unit tests, mocking LLM responses, or recording API interactions.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name pydantic-ai-testing
description Test PydanticAI agents using TestModel, FunctionModel, VCR cassettes, and inline snapshots. Use when writing unit tests, mocking LLM responses, or recording API interactions.

Testing PydanticAI Agents

TestModel (Deterministic Testing)

Use TestModel for tests without API calls:

import pytest
from pydantic_ai import Agent
from pydantic_ai.models.test import TestModel

def test_agent_basic():
    agent = Agent('openai:gpt-4o')

    # Override with TestModel for testing
    result = agent.run_sync('Hello', model=TestModel())

    # TestModel generates deterministic output based on output_type
    assert isinstance(result.output, str)

TestModel Configuration

from pydantic_ai.models.test import TestModel

# Custom text output
model = TestModel(custom_output_text='Custom response')
result = agent.run_sync('Hello', model=model)
assert result.output == 'Custom response'

# Custom structured output (for output_type agents)
from pydantic import BaseModel

class Response(BaseModel):
    message: str
    score: int

agent = Agent('openai:gpt-4o', output_type=Response)
model = TestModel(custom_output_args={'message': 'Test', 'score': 42})
result = agent.run_sync('Hello', model=model)
assert result.output.message == 'Test'

# Seed for reproducible random output
model = TestModel(seed=42)

# Force tool calls
model = TestModel(call_tools=['my_tool', 'another_tool'])

Override Context Manager

from pydantic_ai import Agent
from pydantic_ai.models.test import TestModel

agent = Agent('openai:gpt-4o', deps_type=MyDeps)

def test_with_override():
    mock_deps = MyDeps(db=MockDB())

    with agent.override(model=TestModel(), deps=mock_deps):
        # All runs use TestModel and mock_deps
        result = agent.run_sync('Hello')
        assert result.output

FunctionModel (Custom Logic)

For complete control over model responses:

from pydantic_ai import Agent, ModelMessage, ModelResponse, TextPart
from pydantic_ai.models.function import AgentInfo, FunctionModel

def custom_model(
    messages: list[ModelMessage],
    info: AgentInfo
) -> ModelResponse:
    """Custom model that inspects messages and returns response."""
    # Access the last user message
    last_msg = messages[-1]

    # Return custom response
    return ModelResponse(parts=[TextPart('Custom response')])

agent = Agent(FunctionModel(custom_model))
result = agent.run_sync('Hello')

FunctionModel with Tool Calls

from pydantic_ai import ToolCallPart, ModelResponse
from pydantic_ai.models.function import AgentInfo, FunctionModel

def model_with_tools(
    messages: list[ModelMessage],
    info: AgentInfo
) -> ModelResponse:
    # First request: call a tool
    if len(messages) == 1:
        return ModelResponse(parts=[
            ToolCallPart(
                tool_name='get_data',
                args='{"id": 123}'
            )
        ])

    # After tool response: return final result
    return ModelResponse(parts=[TextPart('Done with tool result')])

agent = Agent(FunctionModel(model_with_tools))

@agent.tool_plain
def get_data(id: int) -> str:
    return f"Data for {id}"

result = agent.run_sync('Get data')

VCR Cassettes (Recorded API Calls)

Record and replay real LLM API interactions:

import pytest

@pytest.mark.vcr
def test_with_recorded_response():
    """Uses recorded cassette from tests/cassettes/"""
    agent = Agent('openai:gpt-4o')
    result = agent.run_sync('Hello')
    assert 'hello' in result.output.lower()

# To record/update cassettes:
# uv run pytest --record-mode=rewrite tests/test_file.py

Cassette files are stored in tests/cassettes/ as YAML.

Inline Snapshots

Assert expected outputs with auto-updating snapshots:

from inline_snapshot import snapshot

def test_agent_output():
    result = agent.run_sync('Hello', model=TestModel())

    # First run: creates snapshot
    # Subsequent runs: asserts against it
    assert result.output == snapshot('expected output here')

# Update snapshots:
# uv run pytest --inline-snapshot=fix

Testing Tools

from pydantic_ai import Agent, RunContext
from pydantic_ai.models.test import TestModel

def test_tool_is_called():
    agent = Agent('openai:gpt-4o')
    tool_called = False

    @agent.tool_plain
    def my_tool(x: int) -> str:
        nonlocal tool_called
        tool_called = True
        return f"Result: {x}"

    # Force TestModel to call the tool
    result = agent.run_sync(
        'Use my_tool',
        model=TestModel(call_tools=['my_tool'])
    )

    assert tool_called

Testing with Dependencies

from dataclasses import dataclass
from unittest.mock import AsyncMock

@dataclass
class Deps:
    api: ApiClient

def test_tool_with_deps():
    # Create mock dependency
    mock_api = AsyncMock()
    mock_api.fetch.return_value = {'data': 'test'}

    agent = Agent('openai:gpt-4o', deps_type=Deps)

    @agent.tool
    async def fetch_data(ctx: RunContext[Deps]) -> dict:
        return await ctx.deps.api.fetch()

    with agent.override(
        model=TestModel(call_tools=['fetch_data']),
        deps=Deps(api=mock_api)
    ):
        result = agent.run_sync('Fetch data')

    mock_api.fetch.assert_called_once()

Capture Messages

Inspect all messages in a run:

from pydantic_ai import Agent, capture_run_messages

agent = Agent('openai:gpt-4o')

with capture_run_messages() as messages:
    result = agent.run_sync('Hello', model=TestModel())

# Inspect captured messages
for msg in messages:
    print(msg)

Testing Patterns Summary

Scenario Approach
Unit tests without API TestModel()
Custom model logic FunctionModel(func)
Recorded real responses @pytest.mark.vcr
Assert output structure inline_snapshot
Test tools are called TestModel(call_tools=[...])
Mock dependencies agent.override(deps=...)

pytest Configuration

Typical pyproject.toml:

[tool.pytest.ini_options]
testpaths = ["tests"]
asyncio_mode = "auto"  # For async tests

Run tests:

uv run pytest tests/test_agent.py -v
uv run pytest --inline-snapshot=fix  # Update snapshots