Claude Code Plugins

Community-maintained marketplace

Feedback

Deep learning for single-cell analysis using scvi-tools. This skill should be used when users need (1) data integration and batch correction with scVI/scANVI, (2) ATAC-seq analysis with PeakVI, (3) CITE-seq multi-modal analysis with totalVI, (4) multiome RNA+ATAC analysis with MultiVI, (5) spatial transcriptomics deconvolution with DestVI, (6) label transfer and reference mapping with scANVI/scArches, (7) RNA velocity with veloVI, or (8) any deep learning-based single-cell method. Triggers include mentions of scVI, scANVI, totalVI, PeakVI, MultiVI, DestVI, veloVI, sysVI, scArches, variational autoencoder, VAE, batch correction, data integration, multi-modal, CITE-seq, multiome, reference mapping, latent space.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name scvi-tools
description Deep learning for single-cell analysis using scvi-tools. This skill should be used when users need (1) data integration and batch correction with scVI/scANVI, (2) ATAC-seq analysis with PeakVI, (3) CITE-seq multi-modal analysis with totalVI, (4) multiome RNA+ATAC analysis with MultiVI, (5) spatial transcriptomics deconvolution with DestVI, (6) label transfer and reference mapping with scANVI/scArches, (7) RNA velocity with veloVI, or (8) any deep learning-based single-cell method. Triggers include mentions of scVI, scANVI, totalVI, PeakVI, MultiVI, DestVI, veloVI, sysVI, scArches, variational autoencoder, VAE, batch correction, data integration, multi-modal, CITE-seq, multiome, reference mapping, latent space.

scvi-tools Deep Learning Skill

This skill provides guidance for deep learning-based single-cell analysis using scvi-tools, the leading framework for probabilistic models in single-cell genomics.

How to Use This Skill

  1. Identify the appropriate workflow from the model/workflow tables below
  2. Read the corresponding reference file for detailed steps and code
  3. Use scripts in scripts/ to avoid rewriting common code
  4. For installation or GPU issues, consult references/environment_setup.md
  5. For debugging, consult references/troubleshooting.md

When to Use This Skill

  • When scvi-tools, scVI, scANVI, or related models are mentioned
  • When deep learning-based batch correction or integration is needed
  • When working with multi-modal data (CITE-seq, multiome)
  • When reference mapping or label transfer is required
  • When analyzing ATAC-seq or spatial transcriptomics data
  • When learning latent representations of single-cell data

Model Selection Guide

Data Type Model Primary Use Case
scRNA-seq scVI Unsupervised integration, DE, imputation
scRNA-seq + labels scANVI Label transfer, semi-supervised integration
CITE-seq (RNA+protein) totalVI Multi-modal integration, protein denoising
scATAC-seq PeakVI Chromatin accessibility analysis
Multiome (RNA+ATAC) MultiVI Joint modality analysis
Spatial + scRNA reference DestVI Cell type deconvolution
RNA velocity veloVI Transcriptional dynamics
Cross-technology sysVI System-level batch correction

Workflow Reference Files

Workflow Reference File Description
Environment Setup references/environment_setup.md Installation, GPU, version info
Data Preparation references/data_preparation.md Formatting data for any model
scRNA Integration references/scrna_integration.md scVI/scANVI batch correction
ATAC-seq Analysis references/atac_peakvi.md PeakVI for accessibility
CITE-seq Analysis references/citeseq_totalvi.md totalVI for protein+RNA
Multiome Analysis references/multiome_multivi.md MultiVI for RNA+ATAC
Spatial Deconvolution references/spatial_deconvolution.md DestVI spatial analysis
Label Transfer references/label_transfer.md scANVI reference mapping
scArches Mapping references/scarches_mapping.md Query-to-reference mapping
Batch Correction references/batch_correction_sysvi.md Advanced batch methods
RNA Velocity references/rna_velocity_velovi.md veloVI dynamics
Troubleshooting references/troubleshooting.md Common issues and solutions

CLI Scripts

Modular scripts for common workflows. Chain together or modify as needed.

Pipeline Scripts

Script Purpose Usage
prepare_data.py QC, filter, HVG selection python scripts/prepare_data.py raw.h5ad prepared.h5ad --batch-key batch
train_model.py Train any scvi-tools model python scripts/train_model.py prepared.h5ad results/ --model scvi
cluster_embed.py Neighbors, UMAP, Leiden python scripts/cluster_embed.py adata.h5ad results/
differential_expression.py DE analysis python scripts/differential_expression.py model/ adata.h5ad de.csv --groupby leiden
transfer_labels.py Label transfer with scANVI python scripts/transfer_labels.py ref_model/ query.h5ad results/
integrate_datasets.py Multi-dataset integration python scripts/integrate_datasets.py results/ data1.h5ad data2.h5ad
validate_adata.py Check data compatibility python scripts/validate_adata.py data.h5ad --batch-key batch

Example Workflow

# 1. Validate input data
python scripts/validate_adata.py raw.h5ad --batch-key batch --suggest

# 2. Prepare data (QC, HVG selection)
python scripts/prepare_data.py raw.h5ad prepared.h5ad --batch-key batch --n-hvgs 2000

# 3. Train model
python scripts/train_model.py prepared.h5ad results/ --model scvi --batch-key batch

# 4. Cluster and visualize
python scripts/cluster_embed.py results/adata_trained.h5ad results/ --resolution 0.8

# 5. Differential expression
python scripts/differential_expression.py results/model results/adata_clustered.h5ad results/de.csv --groupby leiden

Python Utilities

The scripts/model_utils.py provides importable functions for custom workflows:

Function Purpose
prepare_adata() Data preparation (QC, HVG, layer setup)
train_scvi() Train scVI or scANVI
evaluate_integration() Compute integration metrics
get_marker_genes() Extract DE markers
save_results() Save model, data, plots
auto_select_model() Suggest best model
quick_clustering() Neighbors + UMAP + Leiden

Critical Requirements

  1. Raw counts required: scvi-tools models require integer count data

    adata.layers["counts"] = adata.X.copy()  # Before normalization
    scvi.model.SCVI.setup_anndata(adata, layer="counts")
    
  2. HVG selection: Use 2000-4000 highly variable genes

    sc.pp.highly_variable_genes(adata, n_top_genes=2000, batch_key="batch", layer="counts", flavor="seurat_v3")
    adata = adata[:, adata.var['highly_variable']].copy()
    
  3. Batch information: Specify batch_key for integration

    scvi.model.SCVI.setup_anndata(adata, layer="counts", batch_key="batch")
    

Quick Decision Tree

Need to integrate scRNA-seq data?
├── Have cell type labels? → scANVI (references/label_transfer.md)
└── No labels? → scVI (references/scrna_integration.md)

Have multi-modal data?
├── CITE-seq (RNA + protein)? → totalVI (references/citeseq_totalvi.md)
├── Multiome (RNA + ATAC)? → MultiVI (references/multiome_multivi.md)
└── scATAC-seq only? → PeakVI (references/atac_peakvi.md)

Have spatial data?
└── Need cell type deconvolution? → DestVI (references/spatial_deconvolution.md)

Have pre-trained reference model?
└── Map query to reference? → scArches (references/scarches_mapping.md)

Need RNA velocity?
└── veloVI (references/rna_velocity_velovi.md)

Strong cross-technology batch effects?
└── sysVI (references/batch_correction_sysvi.md)

Key Resources