Claude Code Plugins

Community-maintained marketplace

Feedback

automl-optimizer

@anton-abyzov/specweave
3
0

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name automl-optimizer
description Automated machine learning with hyperparameter optimization using Optuna, Hyperopt, or AutoML libraries. Activates for "automl", "hyperparameter tuning", "optimize hyperparameters", "auto tune model", "neural architecture search", "automated ml". Systematically explores model and hyperparameter spaces, tracks all experiments, and finds optimal configurations with minimal manual intervention.

AutoML Optimizer

Overview

Automates the tedious process of hyperparameter tuning and model selection. Instead of manually trying different configurations, define a search space and let AutoML find the optimal configuration through intelligent exploration.

Why AutoML?

Manual Tuning Problems:

  • Time-consuming (hours/days of trial and error)
  • Subjective (depends on intuition)
  • Incomplete (can't try all combinations)
  • Not reproducible (hard to document search process)

AutoML Benefits:

  • ✅ Systematic exploration of search space
  • ✅ Intelligent sampling (Bayesian optimization)
  • ✅ All experiments tracked automatically
  • ✅ Find optimal configuration faster
  • ✅ Reproducible (search process documented)

AutoML Strategies

Strategy 1: Hyperparameter Optimization (Optuna)

from specweave import OptunaOptimizer

# Define search space
def objective(trial):
    # Suggest hyperparameters
    params = {
        'n_estimators': trial.suggest_int('n_estimators', 100, 1000),
        'max_depth': trial.suggest_int('max_depth', 3, 10),
        'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.3, log=True),
        'subsample': trial.suggest_float('subsample', 0.5, 1.0),
        'colsample_bytree': trial.suggest_float('colsample_bytree', 0.5, 1.0)
    }
    
    # Train model
    model = XGBClassifier(**params)
    
    # Cross-validation score
    scores = cross_val_score(model, X_train, y_train, cv=5, scoring='roc_auc')
    
    return scores.mean()

# Run optimization
optimizer = OptunaOptimizer(
    objective=objective,
    n_trials=100,
    direction='maximize',
    increment="0042"
)

best_params = optimizer.optimize()

# Creates:
# - .specweave/increments/0042.../experiments/optuna-study/
#   ├── study.db (Optuna database)
#   ├── optimization_history.png
#   ├── param_importances.png
#   ├── parallel_coordinate.png
#   └── best_params.json

Optimization Report:

# Optuna Optimization Report

## Search Space
- n_estimators: [100, 1000]
- max_depth: [3, 10]
- learning_rate: [0.01, 0.3] (log scale)
- subsample: [0.5, 1.0]
- colsample_bytree: [0.5, 1.0]

## Trials: 100
- Completed: 98
- Pruned: 2 (early stopping)
- Failed: 0

## Best Trial (#47)
- ROC AUC: 0.892 ± 0.012
- Parameters:
  - n_estimators: 673
  - max_depth: 6
  - learning_rate: 0.094
  - subsample: 0.78
  - colsample_bytree: 0.91

## Parameter Importance
1. learning_rate (0.42) - Most important
2. n_estimators (0.28)
3. max_depth (0.18)
4. colsample_bytree (0.08)
5. subsample (0.04) - Least important

## Improvement over Default
- Default params: ROC AUC = 0.856
- Optimized params: ROC AUC = 0.892
- Improvement: +4.2%

Strategy 2: Algorithm Selection + Tuning

from specweave import AutoMLPipeline

# Define candidate algorithms with search spaces
pipeline = AutoMLPipeline(increment="0042")

# Add candidates
pipeline.add_candidate(
    name="xgboost",
    model=XGBClassifier,
    search_space={
        'n_estimators': (100, 1000),
        'max_depth': (3, 10),
        'learning_rate': (0.01, 0.3)
    }
)

pipeline.add_candidate(
    name="lightgbm",
    model=LGBMClassifier,
    search_space={
        'n_estimators': (100, 1000),
        'max_depth': (3, 10),
        'learning_rate': (0.01, 0.3)
    }
)

pipeline.add_candidate(
    name="random_forest",
    model=RandomForestClassifier,
    search_space={
        'n_estimators': (100, 500),
        'max_depth': (3, 20),
        'min_samples_split': (2, 20)
    }
)

pipeline.add_candidate(
    name="logistic_regression",
    model=LogisticRegression,
    search_space={
        'C': (0.001, 100),
        'penalty': ['l1', 'l2']
    }
)

# Run AutoML (tries all algorithms + hyperparameters)
results = pipeline.fit(
    X_train, y_train,
    n_trials_per_model=50,
    cv_folds=5,
    metric='roc_auc'
)

# Best model automatically selected
best_model = pipeline.best_model_
best_params = pipeline.best_params_

AutoML Comparison:

| Model               | Trials | Best Score | Mean Score | Std   | Best Params                          |
|---------------------|--------|------------|------------|-------|--------------------------------------|
| xgboost             | 50     | 0.892      | 0.876      | 0.012 | n_est=673, depth=6, lr=0.094         |
| lightgbm            | 50     | 0.889      | 0.873      | 0.011 | n_est=542, depth=7, lr=0.082         |
| random_forest       | 50     | 0.871      | 0.858      | 0.015 | n_est=384, depth=12, min_split=5     |
| logistic_regression | 50     | 0.845      | 0.840      | 0.008 | C=1.234, penalty=l2                  |

**Winner: XGBoost** (ROC AUC = 0.892)

Strategy 3: Neural Architecture Search (NAS)

from specweave import NeuralArchitectureSearch

# For deep learning
nas = NeuralArchitectureSearch(increment="0042")

# Define search space
search_space = {
    'num_layers': (2, 5),
    'layer_sizes': (32, 512),
    'activation': ['relu', 'tanh', 'elu'],
    'dropout': (0.0, 0.5),
    'optimizer': ['adam', 'sgd', 'rmsprop'],
    'learning_rate': (0.0001, 0.01)
}

# Search for best architecture
best_architecture = nas.search(
    X_train, y_train,
    search_space=search_space,
    n_trials=100,
    max_epochs=50
)

# Creates: Best neural network architecture

AutoML Frameworks Integration

Optuna (Recommended)

import optuna
from specweave import configure_optuna

# Auto-configures Optuna to log to increment
configure_optuna(increment="0042")

def objective(trial):
    params = {
        'n_estimators': trial.suggest_int('n_estimators', 100, 1000),
        'max_depth': trial.suggest_int('max_depth', 3, 10),
    }
    
    model = XGBClassifier(**params)
    score = cross_val_score(model, X, y, cv=5).mean()
    return score

study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100)

# Automatically logged to increment folder

Auto-sklearn

from specweave import AutoSklearnOptimizer

# Automated model selection + feature engineering
optimizer = AutoSklearnOptimizer(
    time_left_for_this_task=3600,  # 1 hour
    increment="0042"
)

optimizer.fit(X_train, y_train)

# Auto-sklearn tries:
# - Multiple algorithms
# - Feature preprocessing combinations
# - Ensemble methods
# Returns best pipeline

H2O AutoML

from specweave import H2OAutoMLOptimizer

optimizer = H2OAutoMLOptimizer(
    max_runtime_secs=3600,  # 1 hour
    max_models=50,
    increment="0042"
)

optimizer.fit(X_train, y_train)

# H2O tries many algorithms in parallel
# Returns leaderboard + best model

Best Practices

1. Start with Default Baseline

# Always compare AutoML to default hyperparameters
baseline_model = XGBClassifier()  # Default params
baseline_score = cross_val_score(baseline_model, X, y, cv=5).mean()

# Then optimize
optimizer = OptunaOptimizer(objective, n_trials=100)
optimized_params = optimizer.optimize()

improvement = (optimized_score - baseline_score) / baseline_score * 100
print(f"Improvement: {improvement:.1f}%")

# Only use optimized if significant improvement (>2-3%)

2. Use Cross-Validation

# ❌ Wrong: Single train/test split
score = model.score(X_test, y_test)

# ✅ Correct: Cross-validation
scores = cross_val_score(model, X_train, y_train, cv=5)
score = scores.mean()

# Prevents overfitting to specific train/test split

3. Set Reasonable Search Budgets

# Quick exploration (development)
optimizer.optimize(n_trials=20)  # ~5-10 minutes

# Moderate search (iteration)
optimizer.optimize(n_trials=100)  # ~30-60 minutes

# Thorough search (final model)
optimizer.optimize(n_trials=500)  # ~2-4 hours

# Don't overdo it: diminishing returns after ~100-200 trials

4. Prune Unpromising Trials

# Optuna can stop bad trials early
study = optuna.create_study(
    direction='maximize',
    pruner=optuna.pruners.MedianPruner()
)

# If trial is performing worse than median at epoch N, stop it
# Saves time by not fully training bad models

5. Document Search Space Rationale

# Document why you chose specific ranges
search_space = {
    # XGBoost recommends max_depth 3-10 for most tasks
    'max_depth': (3, 10),
    
    # Learning rate: 0.01-0.3 covers slow to fast learning
    # Log scale to spend more trials on smaller values
    'learning_rate': (0.01, 0.3, 'log'),
    
    # n_estimators: Balance accuracy vs training time
    'n_estimators': (100, 1000)
}

Integration with SpecWeave

Automatic Experiment Tracking

# All AutoML trials logged automatically
optimizer = OptunaOptimizer(objective, increment="0042")
optimizer.optimize(n_trials=100)

# Creates:
# .specweave/increments/0042.../experiments/
# ├── optuna-trial-001/
# ├── optuna-trial-002/
# ├── ...
# ├── optuna-trial-100/
# └── optuna-summary.md

Living Docs Integration

/specweave:sync-docs update

Updates:

<!-- .specweave/docs/internal/architecture/ml-optimization.md -->

## Hyperparameter Optimization (Increment 0042)

### Optimization Strategy
- Framework: Optuna (Bayesian optimization)
- Trials: 100
- Search space: 5 hyperparameters
- Metric: ROC AUC (5-fold CV)

### Results
- Best score: 0.892 ± 0.012
- Improvement over default: +4.2%
- Most important param: learning_rate (0.42)

### Selected Hyperparameters
```python
{
    'n_estimators': 673,
    'max_depth': 6,
    'learning_rate': 0.094,
    'subsample': 0.78,
    'colsample_bytree': 0.91
}

Recommendation

XGBoost with optimized hyperparameters for production deployment.


## Commands

```bash
# Run AutoML optimization
/ml:optimize 0042 --trials 100

# Compare algorithms
/ml:compare-algorithms 0042

# Show optimization history
/ml:optimization-report 0042

Common Patterns

Pattern 1: Coarse-to-Fine Optimization

# Step 1: Coarse search (wide ranges, few trials)
coarse_space = {
    'n_estimators': (100, 1000, 'int'),
    'max_depth': (3, 10, 'int'),
    'learning_rate': (0.01, 0.3, 'log')
}
coarse_results = optimizer.optimize(coarse_space, n_trials=50)

# Step 2: Fine search (narrow ranges around best)
best_params = coarse_results['best_params']
fine_space = {
    'n_estimators': (best_params['n_estimators'] - 100, 
                     best_params['n_estimators'] + 100),
    'max_depth': (max(3, best_params['max_depth'] - 1),
                  min(10, best_params['max_depth'] + 1)),
    'learning_rate': (best_params['learning_rate'] * 0.5,
                      best_params['learning_rate'] * 1.5, 'log')
}
fine_results = optimizer.optimize(fine_space, n_trials=50)

Pattern 2: Multi-Objective Optimization

# Optimize for multiple objectives (accuracy + speed)
def multi_objective(trial):
    params = {
        'n_estimators': trial.suggest_int('n_estimators', 100, 1000),
        'max_depth': trial.suggest_int('max_depth', 3, 10),
    }
    
    model = XGBClassifier(**params)
    
    # Objective 1: Accuracy
    accuracy = cross_val_score(model, X, y, cv=5).mean()
    
    # Objective 2: Training time
    start = time.time()
    model.fit(X_train, y_train)
    training_time = time.time() - start
    
    return accuracy, -training_time  # Maximize accuracy, minimize time

# Optuna will find Pareto-optimal solutions
study = optuna.create_study(directions=['maximize', 'minimize'])
study.optimize(multi_objective, n_trials=100)

Summary

AutoML accelerates ML development by:

  • ✅ Automating tedious hyperparameter tuning
  • ✅ Exploring search space systematically
  • ✅ Finding optimal configurations faster
  • ✅ Tracking all experiments automatically
  • ✅ Documenting optimization process

Don't spend days manually tuning—let AutoML do it in hours.