| name | automl-optimizer |
| description | Automated machine learning with hyperparameter optimization using Optuna, Hyperopt, or AutoML libraries. Activates for "automl", "hyperparameter tuning", "optimize hyperparameters", "auto tune model", "neural architecture search", "automated ml". Systematically explores model and hyperparameter spaces, tracks all experiments, and finds optimal configurations with minimal manual intervention. |
AutoML Optimizer
Overview
Automates the tedious process of hyperparameter tuning and model selection. Instead of manually trying different configurations, define a search space and let AutoML find the optimal configuration through intelligent exploration.
Why AutoML?
Manual Tuning Problems:
- Time-consuming (hours/days of trial and error)
- Subjective (depends on intuition)
- Incomplete (can't try all combinations)
- Not reproducible (hard to document search process)
AutoML Benefits:
- ✅ Systematic exploration of search space
- ✅ Intelligent sampling (Bayesian optimization)
- ✅ All experiments tracked automatically
- ✅ Find optimal configuration faster
- ✅ Reproducible (search process documented)
AutoML Strategies
Strategy 1: Hyperparameter Optimization (Optuna)
from specweave import OptunaOptimizer
# Define search space
def objective(trial):
# Suggest hyperparameters
params = {
'n_estimators': trial.suggest_int('n_estimators', 100, 1000),
'max_depth': trial.suggest_int('max_depth', 3, 10),
'learning_rate': trial.suggest_float('learning_rate', 0.01, 0.3, log=True),
'subsample': trial.suggest_float('subsample', 0.5, 1.0),
'colsample_bytree': trial.suggest_float('colsample_bytree', 0.5, 1.0)
}
# Train model
model = XGBClassifier(**params)
# Cross-validation score
scores = cross_val_score(model, X_train, y_train, cv=5, scoring='roc_auc')
return scores.mean()
# Run optimization
optimizer = OptunaOptimizer(
objective=objective,
n_trials=100,
direction='maximize',
increment="0042"
)
best_params = optimizer.optimize()
# Creates:
# - .specweave/increments/0042.../experiments/optuna-study/
# ├── study.db (Optuna database)
# ├── optimization_history.png
# ├── param_importances.png
# ├── parallel_coordinate.png
# └── best_params.json
Optimization Report:
# Optuna Optimization Report
## Search Space
- n_estimators: [100, 1000]
- max_depth: [3, 10]
- learning_rate: [0.01, 0.3] (log scale)
- subsample: [0.5, 1.0]
- colsample_bytree: [0.5, 1.0]
## Trials: 100
- Completed: 98
- Pruned: 2 (early stopping)
- Failed: 0
## Best Trial (#47)
- ROC AUC: 0.892 ± 0.012
- Parameters:
- n_estimators: 673
- max_depth: 6
- learning_rate: 0.094
- subsample: 0.78
- colsample_bytree: 0.91
## Parameter Importance
1. learning_rate (0.42) - Most important
2. n_estimators (0.28)
3. max_depth (0.18)
4. colsample_bytree (0.08)
5. subsample (0.04) - Least important
## Improvement over Default
- Default params: ROC AUC = 0.856
- Optimized params: ROC AUC = 0.892
- Improvement: +4.2%
Strategy 2: Algorithm Selection + Tuning
from specweave import AutoMLPipeline
# Define candidate algorithms with search spaces
pipeline = AutoMLPipeline(increment="0042")
# Add candidates
pipeline.add_candidate(
name="xgboost",
model=XGBClassifier,
search_space={
'n_estimators': (100, 1000),
'max_depth': (3, 10),
'learning_rate': (0.01, 0.3)
}
)
pipeline.add_candidate(
name="lightgbm",
model=LGBMClassifier,
search_space={
'n_estimators': (100, 1000),
'max_depth': (3, 10),
'learning_rate': (0.01, 0.3)
}
)
pipeline.add_candidate(
name="random_forest",
model=RandomForestClassifier,
search_space={
'n_estimators': (100, 500),
'max_depth': (3, 20),
'min_samples_split': (2, 20)
}
)
pipeline.add_candidate(
name="logistic_regression",
model=LogisticRegression,
search_space={
'C': (0.001, 100),
'penalty': ['l1', 'l2']
}
)
# Run AutoML (tries all algorithms + hyperparameters)
results = pipeline.fit(
X_train, y_train,
n_trials_per_model=50,
cv_folds=5,
metric='roc_auc'
)
# Best model automatically selected
best_model = pipeline.best_model_
best_params = pipeline.best_params_
AutoML Comparison:
| Model | Trials | Best Score | Mean Score | Std | Best Params |
|---------------------|--------|------------|------------|-------|--------------------------------------|
| xgboost | 50 | 0.892 | 0.876 | 0.012 | n_est=673, depth=6, lr=0.094 |
| lightgbm | 50 | 0.889 | 0.873 | 0.011 | n_est=542, depth=7, lr=0.082 |
| random_forest | 50 | 0.871 | 0.858 | 0.015 | n_est=384, depth=12, min_split=5 |
| logistic_regression | 50 | 0.845 | 0.840 | 0.008 | C=1.234, penalty=l2 |
**Winner: XGBoost** (ROC AUC = 0.892)
Strategy 3: Neural Architecture Search (NAS)
from specweave import NeuralArchitectureSearch
# For deep learning
nas = NeuralArchitectureSearch(increment="0042")
# Define search space
search_space = {
'num_layers': (2, 5),
'layer_sizes': (32, 512),
'activation': ['relu', 'tanh', 'elu'],
'dropout': (0.0, 0.5),
'optimizer': ['adam', 'sgd', 'rmsprop'],
'learning_rate': (0.0001, 0.01)
}
# Search for best architecture
best_architecture = nas.search(
X_train, y_train,
search_space=search_space,
n_trials=100,
max_epochs=50
)
# Creates: Best neural network architecture
AutoML Frameworks Integration
Optuna (Recommended)
import optuna
from specweave import configure_optuna
# Auto-configures Optuna to log to increment
configure_optuna(increment="0042")
def objective(trial):
params = {
'n_estimators': trial.suggest_int('n_estimators', 100, 1000),
'max_depth': trial.suggest_int('max_depth', 3, 10),
}
model = XGBClassifier(**params)
score = cross_val_score(model, X, y, cv=5).mean()
return score
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100)
# Automatically logged to increment folder
Auto-sklearn
from specweave import AutoSklearnOptimizer
# Automated model selection + feature engineering
optimizer = AutoSklearnOptimizer(
time_left_for_this_task=3600, # 1 hour
increment="0042"
)
optimizer.fit(X_train, y_train)
# Auto-sklearn tries:
# - Multiple algorithms
# - Feature preprocessing combinations
# - Ensemble methods
# Returns best pipeline
H2O AutoML
from specweave import H2OAutoMLOptimizer
optimizer = H2OAutoMLOptimizer(
max_runtime_secs=3600, # 1 hour
max_models=50,
increment="0042"
)
optimizer.fit(X_train, y_train)
# H2O tries many algorithms in parallel
# Returns leaderboard + best model
Best Practices
1. Start with Default Baseline
# Always compare AutoML to default hyperparameters
baseline_model = XGBClassifier() # Default params
baseline_score = cross_val_score(baseline_model, X, y, cv=5).mean()
# Then optimize
optimizer = OptunaOptimizer(objective, n_trials=100)
optimized_params = optimizer.optimize()
improvement = (optimized_score - baseline_score) / baseline_score * 100
print(f"Improvement: {improvement:.1f}%")
# Only use optimized if significant improvement (>2-3%)
2. Use Cross-Validation
# ❌ Wrong: Single train/test split
score = model.score(X_test, y_test)
# ✅ Correct: Cross-validation
scores = cross_val_score(model, X_train, y_train, cv=5)
score = scores.mean()
# Prevents overfitting to specific train/test split
3. Set Reasonable Search Budgets
# Quick exploration (development)
optimizer.optimize(n_trials=20) # ~5-10 minutes
# Moderate search (iteration)
optimizer.optimize(n_trials=100) # ~30-60 minutes
# Thorough search (final model)
optimizer.optimize(n_trials=500) # ~2-4 hours
# Don't overdo it: diminishing returns after ~100-200 trials
4. Prune Unpromising Trials
# Optuna can stop bad trials early
study = optuna.create_study(
direction='maximize',
pruner=optuna.pruners.MedianPruner()
)
# If trial is performing worse than median at epoch N, stop it
# Saves time by not fully training bad models
5. Document Search Space Rationale
# Document why you chose specific ranges
search_space = {
# XGBoost recommends max_depth 3-10 for most tasks
'max_depth': (3, 10),
# Learning rate: 0.01-0.3 covers slow to fast learning
# Log scale to spend more trials on smaller values
'learning_rate': (0.01, 0.3, 'log'),
# n_estimators: Balance accuracy vs training time
'n_estimators': (100, 1000)
}
Integration with SpecWeave
Automatic Experiment Tracking
# All AutoML trials logged automatically
optimizer = OptunaOptimizer(objective, increment="0042")
optimizer.optimize(n_trials=100)
# Creates:
# .specweave/increments/0042.../experiments/
# ├── optuna-trial-001/
# ├── optuna-trial-002/
# ├── ...
# ├── optuna-trial-100/
# └── optuna-summary.md
Living Docs Integration
/specweave:sync-docs update
Updates:
<!-- .specweave/docs/internal/architecture/ml-optimization.md -->
## Hyperparameter Optimization (Increment 0042)
### Optimization Strategy
- Framework: Optuna (Bayesian optimization)
- Trials: 100
- Search space: 5 hyperparameters
- Metric: ROC AUC (5-fold CV)
### Results
- Best score: 0.892 ± 0.012
- Improvement over default: +4.2%
- Most important param: learning_rate (0.42)
### Selected Hyperparameters
```python
{
'n_estimators': 673,
'max_depth': 6,
'learning_rate': 0.094,
'subsample': 0.78,
'colsample_bytree': 0.91
}
Recommendation
XGBoost with optimized hyperparameters for production deployment.
## Commands
```bash
# Run AutoML optimization
/ml:optimize 0042 --trials 100
# Compare algorithms
/ml:compare-algorithms 0042
# Show optimization history
/ml:optimization-report 0042
Common Patterns
Pattern 1: Coarse-to-Fine Optimization
# Step 1: Coarse search (wide ranges, few trials)
coarse_space = {
'n_estimators': (100, 1000, 'int'),
'max_depth': (3, 10, 'int'),
'learning_rate': (0.01, 0.3, 'log')
}
coarse_results = optimizer.optimize(coarse_space, n_trials=50)
# Step 2: Fine search (narrow ranges around best)
best_params = coarse_results['best_params']
fine_space = {
'n_estimators': (best_params['n_estimators'] - 100,
best_params['n_estimators'] + 100),
'max_depth': (max(3, best_params['max_depth'] - 1),
min(10, best_params['max_depth'] + 1)),
'learning_rate': (best_params['learning_rate'] * 0.5,
best_params['learning_rate'] * 1.5, 'log')
}
fine_results = optimizer.optimize(fine_space, n_trials=50)
Pattern 2: Multi-Objective Optimization
# Optimize for multiple objectives (accuracy + speed)
def multi_objective(trial):
params = {
'n_estimators': trial.suggest_int('n_estimators', 100, 1000),
'max_depth': trial.suggest_int('max_depth', 3, 10),
}
model = XGBClassifier(**params)
# Objective 1: Accuracy
accuracy = cross_val_score(model, X, y, cv=5).mean()
# Objective 2: Training time
start = time.time()
model.fit(X_train, y_train)
training_time = time.time() - start
return accuracy, -training_time # Maximize accuracy, minimize time
# Optuna will find Pareto-optimal solutions
study = optuna.create_study(directions=['maximize', 'minimize'])
study.optimize(multi_objective, n_trials=100)
Summary
AutoML accelerates ML development by:
- ✅ Automating tedious hyperparameter tuning
- ✅ Exploring search space systematically
- ✅ Finding optimal configurations faster
- ✅ Tracking all experiments automatically
- ✅ Documenting optimization process
Don't spend days manually tuning—let AutoML do it in hours.