Claude Code Plugins

Community-maintained marketplace

Feedback

confluent-schema-registry

@anton-abyzov/specweave
5
0

Schema Registry expert for Avro, Protobuf, and JSON Schema management. Covers schema evolution strategies, compatibility modes, validation, and best practices for managing schemas in Confluent Cloud and self-hosted Schema Registry. Activates for schema registry, avro, protobuf, json schema, schema evolution, compatibility modes, schema validation.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name confluent-schema-registry
description Schema Registry expert for Avro, Protobuf, and JSON Schema management. Covers schema evolution strategies, compatibility modes, validation, and best practices for managing schemas in Confluent Cloud and self-hosted Schema Registry. Activates for schema registry, avro, protobuf, json schema, schema evolution, compatibility modes, schema validation.

Confluent Schema Registry Skill

Expert knowledge of Confluent Schema Registry for managing Avro, Protobuf, and JSON Schema schemas in Kafka ecosystems.

What I Know

Schema Formats

Avro (Most Popular):

  • Binary serialization format
  • Schema evolution support
  • Smaller message size vs JSON
  • Self-describing with schema ID in header
  • Best for: High-throughput applications, data warehousing

Protobuf (Google Protocol Buffers):

  • Binary serialization
  • Strong typing with .proto files
  • Language-agnostic (Java, Python, Go, C++, etc.)
  • Efficient encoding
  • Best for: Polyglot environments, gRPC integration

JSON Schema:

  • Human-readable text format
  • Easy debugging
  • Widely supported
  • Larger message size
  • Best for: Development, debugging, REST APIs

Compatibility Modes

Mode Producer Can Consumer Can Use Case
BACKWARD Remove fields, add optional fields Read old data with new schema Most common, safe for consumers
FORWARD Add fields, remove optional fields Read new data with old schema Safe for producers
FULL Add/remove optional fields only Bi-directional compatibility Both producers and consumers upgrade independently
NONE Any change Must coordinate upgrades Development only, NOT production
BACKWARD_TRANSITIVE BACKWARD across all versions Read any old data Strictest backward compatibility
FORWARD_TRANSITIVE FORWARD across all versions Read any new data Strictest forward compatibility
FULL_TRANSITIVE FULL across all versions Complete bi-directional Strictest overall

Default: BACKWARD (recommended for production)

Schema Evolution Strategies

Adding Fields:

// V1
{
  "type": "record",
  "name": "User",
  "fields": [
    {"name": "id", "type": "long"},
    {"name": "name", "type": "string"}
  ]
}

// V2 - BACKWARD compatible (added optional field with default)
{
  "type": "record",
  "name": "User",
  "fields": [
    {"name": "id", "type": "long"},
    {"name": "name", "type": "string"},
    {"name": "email", "type": ["null", "string"], "default": null}
  ]
}

Removing Fields (BACKWARD compatible):

// V1
{"name": "address", "type": "string"}

// V2 - Remove field (old consumers will ignore it)
// Field removed from schema

Changing Field Types (Breaking Change!):

// ❌ BREAKING - Cannot change string to int
{"name": "age", "type": "string"} → {"name": "age", "type": "int"}

// ✅ SAFE - Use union types
{"name": "age", "type": ["string", "int"], "default": "unknown"}

When to Use This Skill

Activate me when you need help with:

  • Schema evolution strategies ("How do I evolve my Avro schema?")
  • Compatibility mode selection ("Which compatibility mode for production?")
  • Schema validation ("Validate my Avro schema")
  • Best practices ("Schema Registry best practices")
  • Schema registration ("Register Avro schema with Schema Registry")
  • Debugging schema issues ("Schema compatibility error")
  • Format comparison ("Avro vs Protobuf vs JSON Schema")

Best Practices

1. Always Use Compatible Evolution

DO:

  • Add optional fields with defaults
  • Remove optional fields
  • Use union types for flexibility
  • Test schema changes in staging first

DON'T:

  • Change field types
  • Remove required fields
  • Rename fields (add new + deprecate old)
  • Use NONE compatibility in production

2. Schema Naming Conventions

Hierarchical Namespaces:

com.company.domain.EntityName
com.acme.ecommerce.Order
com.acme.ecommerce.OrderLineItem

Subject Naming (Kafka topics):

  • <topic-name>-value - For record values
  • <topic-name>-key - For record keys
  • Example: orders-value, orders-key

3. Schema Registry Configuration

Producer (with Avro):

const { Kafka } = require('kafkajs');
const { SchemaRegistry } = require('@kafkajs/confluent-schema-registry');

const registry = new SchemaRegistry({
  host: 'https://schema-registry:8081',
  auth: {
    username: 'SR_API_KEY',
    password: 'SR_API_SECRET'
  }
});

// Register schema
const schema = `
{
  "type": "record",
  "name": "User",
  "fields": [
    {"name": "id", "type": "long"},
    {"name": "name", "type": "string"}
  ]
}
`;

const { id } = await registry.register({
  type: SchemaType.AVRO,
  schema
});

// Encode message with schema
const payload = await registry.encode(id, {
  id: 1,
  name: 'John Doe'
});

await producer.send({
  topic: 'users',
  messages: [{ value: payload }]
});

Consumer (with Avro):

const consumer = kafka.consumer({ groupId: 'user-processor' });

await consumer.subscribe({ topic: 'users' });

await consumer.run({
  eachMessage: async ({ message }) => {
    // Decode message (schema ID is in header)
    const decodedMessage = await registry.decode(message.value);
    console.log(decodedMessage); // { id: 1, name: 'John Doe' }
  }
});

4. Schema Validation Workflow

Before Registering:

  1. Validate schema syntax (Avro JSON, .proto, JSON Schema)
  2. Check compatibility with existing versions
  3. Test with sample data
  4. Register in dev/staging first
  5. Deploy to production after validation

CLI Validation:

# Check compatibility (before registering)
curl -X POST http://localhost:8081/compatibility/subjects/users-value/versions/latest \
  -H "Content-Type: application/vnd.schemaregistry.v1+json" \
  -d '{"schema": "{...}"}'

# Register schema
curl -X POST http://localhost:8081/subjects/users-value/versions \
  -H "Content-Type: application/vnd.schemaregistry.v1+json" \
  -d '{"schema": "{...}"}'

Common Issues & Solutions

Issue 1: Schema Compatibility Error

Error:

Schema being registered is incompatible with an earlier schema

Root Cause: Violates compatibility mode (e.g., removed required field with BACKWARD mode)

Solution:

  1. Check current compatibility mode:
    curl http://localhost:8081/config/users-value
    
  2. Fix schema to be compatible OR change mode (carefully!)
  3. Validate before registering:
    curl -X POST http://localhost:8081/compatibility/subjects/users-value/versions/latest \
      -d '{"schema": "{...}"}'
    

Issue 2: Schema Not Found

Error:

Subject 'users-value' not found

Root Cause: Schema not registered yet OR wrong subject name

Solution:

  1. List all subjects:
    curl http://localhost:8081/subjects
    
  2. Register schema if missing
  3. Check subject naming convention (<topic>-key or <topic>-value)

Issue 3: Message Deserialization Failed

Error:

Unknown magic byte!

Root Cause: Message not encoded with Schema Registry (missing magic byte + schema ID)

Solution:

  1. Ensure producer uses Schema Registry encoder
  2. Check message format: [magic_byte(1) + schema_id(4) + payload]
  3. Use @kafkajs/confluent-schema-registry library

Schema Evolution Decision Tree

Need to change schema?
├─ Adding new field?
│  ├─ Required field? → Add with default value (BACKWARD)
│  └─ Optional field? → Add with default null (BACKWARD)
│
├─ Removing field?
│  ├─ Required field? → ❌ BREAKING CHANGE (coordinate upgrade)
│  └─ Optional field? → ✅ BACKWARD compatible
│
├─ Changing field type?
│  ├─ Compatible types (e.g., int → long)? → Use union types
│  └─ Incompatible types? → ❌ BREAKING CHANGE (add new field, deprecate old)
│
└─ Renaming field?
   └─ ❌ BREAKING CHANGE → Add new field + mark old as deprecated

Avro vs Protobuf vs JSON Schema Comparison

Feature Avro Protobuf JSON Schema
Encoding Binary Binary Text (JSON)
Message Size Small (90% smaller) Small (80% smaller) Large (baseline)
Human Readable No No Yes
Schema Evolution Excellent Good Fair
Language Support Java, Python, C++ 20+ languages Universal
Performance Very Fast Very Fast Slower
Debugging Harder Harder Easy
Best For Data warehousing, ETL Polyglot, gRPC REST APIs, dev

Recommendation:

  • Production: Avro (best balance)
  • Polyglot teams: Protobuf
  • Development/Debugging: JSON Schema

References


Invoke me when you need schema management, evolution strategies, or compatibility guidance!