| name | n8n-kafka-workflows |
| description | n8n workflow automation with Kafka integration expert. Covers Kafka trigger node, producer node, event-driven workflows, error handling, retries, and no-code/low-code event processing patterns. Activates for n8n kafka, kafka trigger, kafka producer, n8n workflows, event-driven automation, no-code kafka, workflow patterns. |
n8n Kafka Workflows Skill
Expert knowledge of integrating Apache Kafka with n8n workflow automation platform for no-code/low-code event-driven processing.
What I Know
n8n Kafka Nodes
Kafka Trigger Node (Event Consumer):
- Triggers workflow on new Kafka messages
- Supports consumer groups
- Auto-commit or manual offset management
- Multiple topic subscription
- Message batching
Kafka Producer Node (Event Publisher):
- Sends messages to Kafka topics
- Supports key-based partitioning
- Header support
- Compression (gzip, snappy, lz4)
- Batch sending
Configuration:
{
"credentials": {
"kafkaApi": {
"brokers": "localhost:9092",
"clientId": "n8n-workflow",
"ssl": false,
"sasl": {
"mechanism": "plain",
"username": "{{$env.KAFKA_USER}}",
"password": "{{$env.KAFKA_PASSWORD}}"
}
}
}
}
When to Use This Skill
Activate me when you need help with:
- n8n Kafka setup ("Configure Kafka trigger in n8n")
- Workflow patterns ("Event-driven automation with n8n")
- Error handling ("Retry failed Kafka messages")
- Integration patterns ("Enrich Kafka events with HTTP API")
- Producer configuration ("Send messages to Kafka from n8n")
- Consumer groups ("Process Kafka events in parallel")
Common Workflow Patterns
Pattern 1: Event-Driven Processing
Use Case: Process Kafka events with HTTP API enrichment
[Kafka Trigger] → [HTTP Request] → [Transform] → [Database]
↓
orders topic
↓
Get customer data
↓
Merge order + customer
↓
Save to PostgreSQL
n8n Workflow:
Kafka Trigger:
- Topic:
orders - Consumer Group:
order-processor - Offset:
latest
- Topic:
HTTP Request (Enrich):
- URL:
https://api.example.com/customers/{{$json.customerId}} - Method: GET
- Headers:
Authorization: Bearer {{$env.API_TOKEN}}
- URL:
Set Node (Transform):
return { orderId: $json.order.id, customerId: $json.order.customerId, customerName: $json.customer.name, customerEmail: $json.customer.email, total: $json.order.total, timestamp: new Date().toISOString() };PostgreSQL (Save):
- Operation: INSERT
- Table:
enriched_orders - Columns: Mapped from Set node
Pattern 2: Fan-Out (Publish to Multiple Topics)
Use Case: Single event triggers multiple downstream workflows
[Kafka Trigger] → [Switch] → [Kafka Producer] (topic: high-value-orders)
↓ ↓
orders topic └─→ [Kafka Producer] (topic: all-orders)
└─→ [Kafka Producer] (topic: analytics)
n8n Workflow:
- Kafka Trigger: Consume
orders - Switch Node: Route by
totalvalue- Route 1:
total > 1000→high-value-orderstopic - Route 2: Always →
all-orderstopic - Route 3: Always →
analyticstopic
- Route 1:
- Kafka Producer (x3): Send to respective topics
Pattern 3: Retry with Dead Letter Queue (DLQ)
Use Case: Retry failed messages, send to DLQ after 3 attempts
[Kafka Trigger] → [Try/Catch] → [Success] → [Kafka Producer] (topic: processed)
↓ ↓
input topic [Catch Error]
↓
[Increment Retry Count]
↓
[If Retry < 3]
↓ Yes
[Kafka Producer] (topic: input-retry)
↓ No
[Kafka Producer] (topic: dlq)
n8n Workflow:
- Kafka Trigger:
inputtopic - Try Node: HTTP Request (may fail)
- Catch Node (Error Handler):
- Get retry count from message headers
- Increment retry count
- If retry < 3: Send to
input-retrytopic - Else: Send to
dlqtopic
Pattern 4: Batch Processing with Aggregation
Use Case: Aggregate 100 events, send batch to API
[Kafka Trigger] → [Aggregate] → [HTTP Request] → [Kafka Producer]
↓ ↓
events topic Buffer 100 msgs
↓
Send batch to API
↓
Publish results
n8n Workflow:
- Kafka Trigger: Enable batching (100 messages)
- Aggregate Node: Combine into array
- HTTP Request: POST batch
- Kafka Producer: Send results
Pattern 5: Change Data Capture (CDC) to Kafka
Use Case: Stream database changes to Kafka
[Cron Trigger] → [PostgreSQL] → [Compare] → [Kafka Producer]
↓ ↓ ↓
Every 1 min Get new rows Find diffs
↓
Publish changes
n8n Workflow:
- Cron: Every 1 minute
- PostgreSQL: SELECT new rows (WHERE updated_at > last_run)
- Function Node: Detect changes (INSERT/UPDATE/DELETE)
- Kafka Producer: Send CDC events
Best Practices
1. Use Consumer Groups for Parallel Processing
✅ DO:
Workflow Instance 1:
Consumer Group: order-processor
Partition: 0, 1, 2
Workflow Instance 2:
Consumer Group: order-processor
Partition: 3, 4, 5
❌ DON'T:
// WRONG: No consumer group (all instances get all messages!)
Consumer Group: (empty)
2. Handle Errors with Try/Catch
✅ DO:
[Kafka Trigger]
↓
[Try] → [HTTP Request] → [Success Handler]
↓
[Catch] → [Error Handler] → [Kafka DLQ]
❌ DON'T:
// WRONG: No error handling (workflow crashes on failure!)
[Kafka Trigger] → [HTTP Request] → [Database]
3. Use Environment Variables for Credentials
✅ DO:
Kafka Brokers: {{$env.KAFKA_BROKERS}}
SASL Username: {{$env.KAFKA_USER}}
SASL Password: {{$env.KAFKA_PASSWORD}}
❌ DON'T:
// WRONG: Hardcoded credentials in workflow!
Kafka Brokers: "localhost:9092"
SASL Username: "admin"
SASL Password: "admin-secret"
4. Set Explicit Partitioning Keys
✅ DO:
Kafka Producer:
Topic: orders
Key: {{$json.customerId}} // Partition by customer
Message: {{$json}}
❌ DON'T:
// WRONG: No key (random partitioning!)
Kafka Producer:
Topic: orders
Message: {{$json}}
5. Monitor Consumer Lag
Setup Prometheus metrics export:
[Cron Trigger] → [Kafka Admin] → [Get Consumer Lag] → [Prometheus]
↓ ↓ ↓
Every 30s List consumer groups Calculate lag
↓
Push to Pushgateway
Error Handling Strategies
Strategy 1: Exponential Backoff Retry
// Function Node (Calculate Backoff)
const retryCount = $json.headers?.['retry-count'] || 0;
const backoffMs = Math.min(1000 * Math.pow(2, retryCount), 60000); // Max 60 seconds
return {
retryCount: retryCount + 1,
backoffMs,
nextRetryAt: new Date(Date.now() + backoffMs).toISOString()
};
Workflow:
- Try processing
- On failure: Calculate backoff
- Wait (using Wait node)
- Retry (send to retry topic)
- If max retries reached: Send to DLQ
Strategy 2: Circuit Breaker
// Function Node (Check Failure Rate)
const failures = $json.metrics.failures || 0;
const total = $json.metrics.total || 1;
const failureRate = failures / total;
if (failureRate > 0.5) {
// Circuit open (too many failures)
return { circuitState: 'OPEN', skipProcessing: true };
}
return { circuitState: 'CLOSED', skipProcessing: false };
Workflow:
- Track success/failure metrics
- Calculate failure rate
- If >50% failures: Open circuit (stop processing)
- Wait 30 seconds
- Try single request (half-open)
- If success: Close circuit (resume)
Strategy 3: Idempotent Processing
// Function Node (Deduplication)
const messageId = $json.headers?.['message-id'];
const cache = $('Redis').get(messageId);
if (cache) {
// Already processed, skip
return { skip: true, reason: 'duplicate' };
}
// Process and cache
await $('Redis').set(messageId, 'processed', { ttl: 3600 });
return { skip: false };
Workflow:
- Extract message ID
- Check Redis cache
- If exists: Skip processing
- Process message
- Store message ID in cache (1 hour TTL)
Performance Optimization
1. Batch Processing
Enable batching in Kafka Trigger:
Kafka Trigger:
Batch Size: 100
Batch Timeout: 5000ms // Max wait 5 seconds
Process batch:
// Function Node (Batch Transform)
const events = $input.all();
const transformed = events.map(event => ({
id: event.json.id,
timestamp: event.json.timestamp,
processed: true
}));
return transformed;
2. Parallel Processing with Split in Batches
[Kafka Trigger] → [Split in Batches] → [HTTP Request] → [Aggregate]
↓ ↓ ↓
1000 events 100 at a time Parallel API calls
↓
Combine results
3. Use Compression
Kafka Producer:
Compression: lz4 // Or gzip, snappy
Batch Size: 1000 // Larger batches = better compression
Integration Patterns
Pattern 1: Kafka + HTTP API Enrichment
[Kafka Trigger] → [HTTP Request] → [Transform] → [Kafka Producer]
↓ ↓ ↓
Raw events Enrich from API Combine data
↓
Publish enriched
Pattern 2: Kafka + Database Sync
[Kafka Trigger] → [PostgreSQL Upsert] → [Kafka Producer]
↓ ↓ ↓
CDC events Update database Publish success/failure
Pattern 3: Kafka + Email Notifications
[Kafka Trigger] → [If Critical] → [Send Email] → [Kafka Producer]
↓ ↓ ↓
Alerts severity=critical Notify admin
↓
Publish alert sent
Pattern 4: Kafka + Slack Alerts
[Kafka Trigger] → [Transform] → [Slack] → [Kafka Producer]
↓ ↓ ↓
Errors Format message Send to #alerts
↓
Publish notification
Testing n8n Workflows
Manual Testing
Test with Sample Data:
- Right-click node → "Add Sample Data"
- Execute workflow
- Check outputs
Test Kafka Producer:
# Consume test topic kcat -C -b localhost:9092 -t test-output -o beginningTest Kafka Trigger:
# Produce test message echo '{"test": "data"}' | kcat -P -b localhost:9092 -t test-input
Automated Testing
n8n CLI:
# Execute workflow with input
n8n execute workflow --file workflow.json --input data.json
# Export workflow
n8n export:workflow --id=123 --output=workflow.json
Common Issues & Solutions
Issue 1: Consumer Lag Building Up
Symptoms: Processing slower than message arrival
Solutions:
- Increase consumer group size (parallel processing)
- Enable batching (process 100 messages at once)
- Optimize HTTP requests (use connection pooling)
- Use Split in Batches for parallel processing
Issue 2: Duplicate Messages
Cause: At-least-once delivery, no deduplication
Solution: Add idempotency check:
// Check if message already processed
const messageId = $json.headers?.['message-id'];
const exists = await $('Redis').exists(messageId);
if (exists) {
return { skip: true };
}
Issue 3: Workflow Execution Timeout
Cause: Long-running HTTP requests
Solution: Use async patterns:
[Kafka Trigger] → [Webhook] → [Wait for Webhook] → [Process Response]
↓ ↓
Trigger job Async callback
↓
Continue workflow
References
- n8n Kafka Trigger: https://docs.n8n.io/integrations/builtin/trigger-nodes/n8n-nodes-base.kafkatrigger/
- n8n Kafka Producer: https://docs.n8n.io/integrations/builtin/app-nodes/n8n-nodes-base.kafka/
- n8n Best Practices: https://docs.n8n.io/hosting/scaling/best-practices/
- Workflow Examples: https://n8n.io/workflows
Invoke me when you need n8n Kafka integration, workflow automation, or event-driven no-code patterns!