| name | data-connector |
| description | Connect to and inspect data sources. Use this skill when you need to verify data access, inspect table schemas, check row counts, or understand the structure of a dataset before performing analysis. |
Data Connector
Connect to data sources and retrieve basic information about datasets.
When to Use
- Before starting any data analysis task
- To verify data is accessible and readable
- To inspect column names and types
- To check dataset size (rows, columns, file size)
Available Scripts
data-connect - Inspect Data Source
Connects to a data source and returns schema and summary information.
# Basic usage (outputs to stdout)
data-connect --source <path>
# Save to file
data-connect --source <path> --output report.md
Arguments:
--source(required): Path to data file or connection string--output: Output file path (default: stdout)--type: Override source type detection (parquet, csv, json)
Output Format
The script produces a markdown report with:
- Source path and type
- Row count and column count
- File size (if applicable)
- Column listing with data types
Example Output
# Data Connection Report
- **source**: data/sales.parquet
- **type**: parquet
- **row_count**: 1,234,567
- **column_count**: 15
- **file_size**: 45.2 MB
## Columns
| Column | Type |
|--------|------|
| id | INTEGER |
| date | DATE |
| amount | DOUBLE |
| category | VARCHAR |
Supported Data Sources
The connector auto-detects source type from file extension:
.parquet- Apache Parquet files.csv- CSV files (auto-detects delimiter).json,.jsonl- JSON files.db,.duckdb- DuckDB database files