Claude Code Plugins

Community-maintained marketplace

Feedback

Optimize SQL queries for performance with indexing strategies, query rewriting, and execution plan analysis. Use when queries are slow, optimizing database performance, or analyzing query execution.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name query-optimizer
description Optimize SQL queries for performance with indexing strategies, query rewriting, and execution plan analysis. Use when queries are slow, optimizing database performance, or analyzing query execution.

Query Optimizer

Optimize SQL queries for better performance through indexing, rewriting, and analysis.

Quick Start

Use EXPLAIN to analyze queries, add indexes on WHERE/JOIN columns, avoid SELECT *, limit results.

Instructions

Query Analysis with EXPLAIN

Basic EXPLAIN:

EXPLAIN SELECT * FROM users WHERE email = 'user@example.com';

EXPLAIN ANALYZE (actual execution):

EXPLAIN ANALYZE SELECT * FROM users WHERE email = 'user@example.com';

Key metrics to check:

  • Seq Scan (bad) vs Index Scan (good)
  • Rows: Estimated vs actual
  • Cost: Lower is better
  • Execution time

Common Performance Issues

1. Missing Indexes

Problem:

-- Seq Scan on users (cost=0.00..1234.56)
SELECT * FROM users WHERE email = 'user@example.com';

Solution:

CREATE INDEX idx_users_email ON users(email);
-- Now: Index Scan using idx_users_email

**2. SELECT ***

Problem:

SELECT * FROM posts;  -- Fetches all columns

Solution:

SELECT id, title, created_at FROM posts;  -- Only needed columns

3. N+1 Queries

Problem:

-- Fetches posts
SELECT * FROM posts;
-- Then for each post:
SELECT * FROM users WHERE id = ?;

Solution:

-- Single query with JOIN
SELECT posts.*, users.name 
FROM posts 
JOIN users ON posts.user_id = users.id;

4. No LIMIT

Problem:

SELECT * FROM posts ORDER BY created_at DESC;  -- Returns all rows

Solution:

SELECT * FROM posts ORDER BY created_at DESC LIMIT 20;

Indexing Strategies

Single column index:

CREATE INDEX idx_users_email ON users(email);

Composite index (order matters):

-- For: WHERE user_id = ? AND created_at > ?
CREATE INDEX idx_posts_user_created ON posts(user_id, created_at);

Covering index (includes all needed columns):

-- For: SELECT id, title FROM posts WHERE user_id = ?
CREATE INDEX idx_posts_user_id_title ON posts(user_id) INCLUDE (title);

Partial index (filtered):

CREATE INDEX idx_active_users ON users(email) WHERE is_active = true;

Index on expressions:

CREATE INDEX idx_users_lower_email ON users(LOWER(email));
-- For: WHERE LOWER(email) = 'user@example.com'

Query Rewriting

Use EXISTS instead of IN for large sets:

-- Slow
SELECT * FROM users WHERE id IN (SELECT user_id FROM posts);

-- Faster
SELECT * FROM users u WHERE EXISTS (
    SELECT 1 FROM posts p WHERE p.user_id = u.id
);

Use JOIN instead of subquery:

-- Slow
SELECT * FROM posts WHERE user_id IN (
    SELECT id FROM users WHERE is_active = true
);

-- Faster
SELECT p.* FROM posts p
JOIN users u ON p.user_id = u.id
WHERE u.is_active = true;

Avoid functions on indexed columns:

-- Bad: Can't use index
SELECT * FROM users WHERE YEAR(created_at) = 2024;

-- Good: Can use index
SELECT * FROM users 
WHERE created_at >= '2024-01-01' 
AND created_at < '2025-01-01';

Use UNION ALL instead of UNION:

-- Slow: Removes duplicates
SELECT id FROM posts UNION SELECT id FROM drafts;

-- Fast: No duplicate removal
SELECT id FROM posts UNION ALL SELECT id FROM drafts;

JOIN Optimization

Order matters - filter early:

-- Bad: Large intermediate result
SELECT * FROM posts p
JOIN users u ON p.user_id = u.id
WHERE p.created_at > '2024-01-01';

-- Good: Filter first
SELECT * FROM posts p
WHERE p.created_at > '2024-01-01'
JOIN users u ON p.user_id = u.id;

Use appropriate JOIN type:

-- INNER JOIN: Only matching rows
SELECT * FROM posts p
INNER JOIN users u ON p.user_id = u.id;

-- LEFT JOIN: All posts, even without user
SELECT * FROM posts p
LEFT JOIN users u ON p.user_id = u.id;

Index JOIN columns:

CREATE INDEX idx_posts_user_id ON posts(user_id);
CREATE INDEX idx_users_id ON users(id);  -- Usually PK already indexed

Pagination Optimization

Offset pagination (slow for large offsets):

-- Slow for page 1000
SELECT * FROM posts 
ORDER BY created_at DESC 
LIMIT 20 OFFSET 20000;

Cursor pagination (faster):

-- First page
SELECT * FROM posts 
ORDER BY created_at DESC, id DESC 
LIMIT 20;

-- Next page (using last created_at and id)
SELECT * FROM posts 
WHERE (created_at, id) < ('2024-01-01 12:00:00', 12345)
ORDER BY created_at DESC, id DESC 
LIMIT 20;

Aggregation Optimization

Use indexes for GROUP BY:

CREATE INDEX idx_posts_user_id ON posts(user_id);

SELECT user_id, COUNT(*) 
FROM posts 
GROUP BY user_id;

Filter before aggregating:

-- Good
SELECT user_id, COUNT(*) 
FROM posts 
WHERE created_at > '2024-01-01'
GROUP BY user_id;

Use HAVING for aggregate filters:

SELECT user_id, COUNT(*) as post_count
FROM posts 
GROUP BY user_id
HAVING COUNT(*) > 10;

Subquery Optimization

Correlated subqueries (slow):

-- Bad: Runs subquery for each row
SELECT * FROM users u
WHERE (SELECT COUNT(*) FROM posts WHERE user_id = u.id) > 10;

JOIN instead:

-- Good: Single query
SELECT u.* FROM users u
JOIN (
    SELECT user_id, COUNT(*) as post_count
    FROM posts
    GROUP BY user_id
    HAVING COUNT(*) > 10
) p ON u.id = p.user_id;

Caching Strategies

Materialized views:

CREATE MATERIALIZED VIEW user_post_counts AS
SELECT user_id, COUNT(*) as post_count
FROM posts
GROUP BY user_id;

-- Refresh periodically
REFRESH MATERIALIZED VIEW user_post_counts;

Query result caching (application level):

# Cache expensive queries
@cache(ttl=300)
def get_popular_posts():
    return db.query("SELECT * FROM posts ORDER BY views DESC LIMIT 10")

Common Patterns

Full-text Search

PostgreSQL:

-- Add tsvector column
ALTER TABLE posts ADD COLUMN search_vector tsvector;

-- Update with trigger
CREATE INDEX idx_posts_search ON posts USING GIN(search_vector);

-- Search
SELECT * FROM posts 
WHERE search_vector @@ to_tsquery('postgresql & optimization');

Use dedicated search engine for complex needs:

  • Elasticsearch
  • Algolia
  • Meilisearch

Batch Operations

Bulk insert:

-- Bad: Multiple inserts
INSERT INTO users (name) VALUES ('User 1');
INSERT INTO users (name) VALUES ('User 2');

-- Good: Single insert
INSERT INTO users (name) VALUES 
('User 1'),
('User 2'),
('User 3');

Bulk update:

-- Use CASE for conditional updates
UPDATE posts 
SET status = CASE 
    WHEN views > 1000 THEN 'popular'
    WHEN views > 100 THEN 'normal'
    ELSE 'new'
END;

Connection Pooling

# Use connection pool
from sqlalchemy import create_engine

engine = create_engine(
    'postgresql://user:pass@localhost/db',
    pool_size=20,
    max_overflow=10
)

Performance Monitoring

Check slow queries:

-- PostgreSQL: Enable slow query log
ALTER DATABASE mydb SET log_min_duration_statement = 1000;  -- 1 second

-- View pg_stat_statements
SELECT query, calls, total_time, mean_time
FROM pg_stat_statements
ORDER BY mean_time DESC
LIMIT 10;

Check index usage:

SELECT 
    schemaname,
    tablename,
    indexname,
    idx_scan,
    idx_tup_read,
    idx_tup_fetch
FROM pg_stat_user_indexes
WHERE idx_scan = 0  -- Unused indexes
ORDER BY pg_relation_size(indexrelid) DESC;

Check table statistics:

SELECT 
    schemaname,
    tablename,
    seq_scan,
    seq_tup_read,
    idx_scan,
    idx_tup_fetch
FROM pg_stat_user_tables
ORDER BY seq_scan DESC;

Best Practices

Always:

  • Use EXPLAIN ANALYZE for slow queries
  • Index foreign keys
  • Index WHERE/JOIN columns
  • Limit result sets
  • Use prepared statements

Avoid:

  • SELECT *
  • Functions on indexed columns in WHERE
  • Correlated subqueries
  • Large OFFSET values
  • Over-indexing

Monitor:

  • Slow query log
  • Index usage
  • Table statistics
  • Connection pool

Troubleshooting

Query still slow after indexing:

  • Check if index is being used (EXPLAIN)
  • Verify index column order for composite indexes
  • Consider covering index
  • Check for stale statistics (ANALYZE table)

Too many indexes:

  • Remove unused indexes
  • Combine similar indexes
  • Monitor write performance

High memory usage:

  • Reduce work_mem
  • Optimize sort operations
  • Use streaming instead of loading all data