Claude Code Plugins

Community-maintained marketplace

Feedback

Implement RAG systems using Weaviate vector database. Use when building semantic search, document retrieval, or knowledge base systems.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name weaviate-rag
description Implement RAG systems using Weaviate vector database. Use when building semantic search, document retrieval, or knowledge base systems.
allowed-tools Read, Write, Grep, Glob

Weaviate RAG Configuration Skill

Configure MoodleNRW RAG system with Weaviate vector store.

Trigger

  • RAG system setup or troubleshooting
  • Vector store configuration
  • Document embedding requests

Running Services

  • Weaviate HTTP: localhost:8095
  • Weaviate gRPC: localhost:50055
  • Chainlit UI: localhost:8000

Server Paths

  • RAG System: /opt/cloodle/tools/ai/multi_agent_rag_system/
  • Chatbot: /opt/cloodle/tools/ai/moodle-chatbot/

Weaviate Client Configuration

import weaviate

client = weaviate.Client(
    url="http://localhost:8095",
    additional_headers={
        "X-OpenAI-Api-Key": os.getenv("OPENAI_API_KEY", "")
    }
)

Docker Commands

# Start Weaviate
cd /opt/cloodle/tools/ai/multi_agent_rag_system
docker-compose up -d

# Check status
docker ps | grep weaviate

# View logs
docker logs multi_agent_rag_system_weaviate_1

Schema Creation

schema = {
    "class": "MoodleDocument",
    "vectorizer": "text2vec-transformers",
    "properties": [
        {"name": "content", "dataType": ["text"]},
        {"name": "source", "dataType": ["string"]},
        {"name": "course_id", "dataType": ["int"]}
    ]
}
client.schema.create_class(schema)

Embedding Models (Local)

Model Dimensions Best For
nomic-embed-text 768 General purpose
bge-m3 1024 Multilingual
mxbai-embed-large 1024 High quality

Start Chainlit

cd /opt/cloodle/tools/ai/multi_agent_rag_system
source .venv/bin/activate
chainlit run app.py