Claude Code Plugins

Community-maintained marketplace

Feedback

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name bloat-detector
description Detect codebase bloat through progressive analysis: dead code, duplication, complexity, and documentation bloat. Triggers: bloat detection, dead code, code cleanup, duplication, redundancy, codebase health, technical debt, unused code Use when: preparing for refactoring, context usage is high, quarterly maintenance, pre-release cleanup DO NOT use when: actively developing new features, time-sensitive bug fixes. DO NOT use when: codebase is < 1000 lines (insufficient scale for bloat). Progressive 3-tier detection: quick scan → targeted analysis → deep audit.
category conservation
tags bloat, cleanup, static-analysis, technical-debt, optimization
dependencies
tools Bash, Grep, Glob, Read
modules quick-scan, git-history-analysis, code-bloat-patterns, documentation-bloat, static-analysis-integration
progressive_loading true
usage_patterns bloat-detection, codebase-cleanup, technical-debt-reduction
complexity intermediate
estimated_tokens 800

Bloat Detector

Overview

Systematically detect and eliminate codebase bloat through progressive analysis tiers. Reduces context consumption, improves navigability, and identifies technical debt hotspots.

Bloat Categories:

  • Code: Dead code, God classes, Lava flow, duplication
  • Documentation: Redundancy, excessive nesting, verbosity
  • Dependencies: Unused imports, dependency bloat
  • Git History: Stale files, low-churn code, orphaned branches

Quick Start

Tier 1: Quick Scan (5 minutes, no tools required)

# Heuristic-based detection
/bloat-scan

Detects:

  • Files > 500 lines (God class candidates)
  • Stale files (unchanged 6+ months)
  • TODO/FIXME comments > 3 months old
  • Commented code blocks
  • Basic duplication patterns

Output: Prioritized quick wins with token savings estimates

Tier 2: Targeted Analysis (15 minutes, optional tools)

# Focus on specific bloat types
/bloat-scan --level 2 --focus code
/bloat-scan --level 2 --focus docs
/bloat-scan --level 2 --focus deps

Detects:

  • Static analysis (Vulture, deadcode, Knip if available)
  • Git churn × complexity hotspots
  • Documentation similarity (duplicate content)
  • Import graph analysis

Output: Detailed findings with confidence levels, remediation steps

Tier 3: Deep Audit (1 hour, full tooling)

# Deep analysis across all dimensions
/bloat-scan --level 3 --report audit-report.md

Detects:

  • Full static analysis suite
  • Cross-file redundancy
  • Dependency graph visualization
  • Readability metrics (Flesch-Kincaid)
  • Bundle size analysis (JS/TS)

Output: Full audit report, refactoring roadmap, automated fixes

When to Use

Recommended Triggers:

  • ✅ Context usage > 30% regularly
  • ✅ Quarterly maintenance cycles
  • ✅ Pre-release cleanup
  • ✅ Onboarding feedback: "hard to navigate"
  • ✅ Before major refactoring

Avoid Using:

  • ❌ During active feature development
  • ❌ Time-sensitive bug fixes
  • ❌ Codebases < 1000 lines
  • ❌ When tools are unavailable (Tier 2/3)

Detection Confidence Levels

Level Confidence Action
HIGH (90-100%) Multiple signals confirm Safe to remove
MEDIUM (70-89%) Single tool + heuristic Review before action
LOW (50-69%) Heuristic only Manual investigation needed
INVESTIGATE Edge case Domain knowledge required

Prioritization Formula

Priority Score = (
    (Token_Savings × 0.4) +
    (Maintenance_Impact × 0.3) +
    (Confidence_Level × 0.2) +
    (Fix_Ease × 0.1)
)

Output ranked by descending priority score.

Module Architecture

Tier 1: Quick Scan (Always Available)

  • quick-scan.md: Heuristic-based detection, no external tools
  • git-history-analysis.md: Staleness, churn metrics, reference counting

Tier 2: Targeted Analysis (Optional Tools)

  • code-bloat-patterns.md: God classes, Lava flow, anti-patterns
  • documentation-bloat.md: Redundancy, readability, similarity
  • static-analysis-integration.md: Tool integration (Vulture, Knip, etc.)

Tier 3: Deep Audit (Full Tooling)

All above + deep cross-file analysis, dependency graphs, automated fixes

Integration Points

  • Context Optimization: Provides bloat metrics to MECW assessment
  • Performance Monitoring: Correlates bloat with performance issues
  • Git Workflows (sanctum): Integrates with PR review, cleanup branches
  • Memory Palace: Stores bloat patterns as knowledge for future detection

Example Output

=== Bloat Detection Report ===

Scan Level: 1 (Quick Scan)
Duration: 2m 34s
Files Scanned: 847

HIGH PRIORITY (Immediate Action):
  ❌ plugins/old-plugin/legacy.py
     - 1,247 lines (God class)
     - Unchanged 18 months
     - No imports found (dead code)
     - Confidence: 95%
     - Token Savings: ~4,500 tokens
     - Action: DELETE or archive

  ❌ docs/archive/old-guide.md
     - 87% similar to docs/current-guide.md
     - Duplicate content detected
     - Confidence: 92%
     - Token Savings: ~2,100 tokens
     - Action: MERGE or remove

MEDIUM PRIORITY (Review Soon):
  ⚠️  src/core/manager.py
     - 634 lines, 15 methods
     - God class candidate
     - Confidence: 75%
     - Impact: High (core module)
     - Action: REFACTOR into smaller classes

  ⚠️  5 files with duplicate error handling
     - Pattern detected across modules
     - Confidence: 70%
     - Token Savings: ~1,200 tokens
     - Action: EXTRACT to shared utility

STATS:
  - Estimated bloat: 3,847 lines (14% of codebase)
  - Potential token savings: ~18,000 tokens
  - Context reduction: ~12%
  - High-confidence findings: 3
  - Medium-confidence findings: 6

NEXT STEPS:
  1. Review HIGH priority items (3 findings)
  2. Run Tier 2 scan for detailed analysis: /bloat-scan --level 2
  3. Create cleanup branch: git checkout -b cleanup/bloat-reduction
  4. Track progress with issue: /create-issue "Bloat reduction Q1 2025"

Safety & Guardrails

NEVER auto-delete without approval:

  • All deletions require explicit user confirmation
  • Provide preview diffs before changes
  • Support --dry-run flag for all operations
  • Create backup branches before bulk changes

Automatic Cache Directory Exclusion:

All scan operations automatically exclude files and directories using a three-tier approach:

  1. Default Excludes (always applied):

    # Python
    .venv/, venv/, __pycache__/, .pytest_cache/, .mypy_cache/, .ruff_cache/, .tox/
    
    # JavaScript/Node
    node_modules/
    
    # Build artifacts
    dist/, build/, *.egg-info/
    
    # Version control
    .git/
    
    # Dependencies
    vendor/
    
    # IDE
    .vscode/, .idea/
    
  2. .gitignore Integration (if present):

    • Automatically inherits patterns from your .gitignore
    • Respects project-specific exclusions
    • Prevents scanning generated files, build artifacts, etc.
  3. .bloat-ignore (optional, bloat-specific overrides):

    • Additional patterns specific to bloat detection
    • Can override or extend .gitignore patterns
    • Useful for excluding test fixtures, templates, etc.

Exclusion Priority: Default → .gitignore.bloat-ignore

False Positive Mitigation:

  • Multi-signal validation (git + static + heuristic)
  • Automatic exclusion of cache/dependency directories
  • .gitignore pattern inheritance
  • Optional .bloat-ignore file support
  • Test file exemptions
  • Generated code detection

Detailed Resources

  • Quick Scan: See modules/quick-scan.md for heuristic patterns
  • Git Analysis: See modules/git-history-analysis.md for churn metrics
  • Code Patterns: See modules/code-bloat-patterns.md for anti-patterns
  • Doc Bloat: See modules/documentation-bloat.md for similarity detection
  • Static Analysis: See modules/static-analysis-integration.md for tool setup

Related Skills

  • context-optimization: MECW principles, token reduction
  • performance-monitoring: Resource usage correlation
  • resource-management: Broader optimization strategies

Related Agents

  • bloat-auditor: Executes scans, generates reports, recommends actions