Claude Code Plugins

Community-maintained marketplace

Feedback

mcp-code-execution

@athola/claude-night-market
8
0

Transform tool-heavy workflows into MCP code execution patterns

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name mcp-code-execution
description Transform tool-heavy workflows into MCP code execution patterns using MECW principles for optimized token savings and hallucination prevention.
location plugin
token_budget 200
progressive_loading true
dependencies [object Object]

MCP Code Execution Hub

Quick Start

Use specialized MCP modules for specific tasks:

  • mcp-subagents for workflow decomposition
  • mcp-patterns for transformation templates
  • mcp-validation for hallucination prevention

When to Use

  • Automatic: Keywords: code execution, MCP, tool chain, data pipeline, MECW
  • Tool Chains: >3 tools chained sequentially
  • Data Processing: Large datasets (>10k rows) or files (>50KB)
  • Context Pressure: Current usage >25% of total window (proactive context management)

Core Hub Responsibilities

  • Orchestrates MCP code execution workflow
  • Routes to appropriate specialized modules
  • Coordinates MECW compliance across submodules
  • Manages token budget allocation for submodules

Required TodoWrite Items

  1. mcp-code-execution:assess-workflow
  2. mcp-code-execution:route-to-modules
  3. mcp-code-execution:coordinate-mecw
  4. mcp-code-execution:synthesize-results

Step 1 – Assess Workflow (mcp-code-execution:assess-workflow)

Workflow Classification

def classify_workflow_for_mecw(workflow):
    """Determine appropriate MCP modules and MECW strategy"""

    if has_tool_chains(workflow) and workflow.complexity == 'high':
        return {
            'modules': ['mcp-subagents', 'mcp-patterns'],
            'mecw_strategy': 'aggressive',
            'token_budget': 600
        }
    elif workflow.data_size > '10k_rows':
        return {
            'modules': ['mcp-patterns', 'mcp-validation'],
            'mecw_strategy': 'moderate',
            'token_budget': 400
        }
    else:
        return {
            'modules': ['mcp-patterns'],
            'mecw_strategy': 'conservative',
            'token_budget': 200
        }

MECW Risk Assessment

Delegate to mcp-validation module for detailed risk analysis:

def delegate_mecw_assessment(workflow):
    return mcp_validation_assess_mecw_risk(
        workflow,
        hub_allocated_tokens=self.token_budget * 0.5
    )

Step 2 – Route to Modules (mcp-code-execution:route-to-modules)

Module Orchestration

class MCPExecutionHub:
    def __init__(self):
        self.modules = {
            'mcp-subagents': MCPSubagentsModule(),
            'mcp-patterns': MCPatternsModule(),
            'mcp-validation': MCPValidationModule()
        }

    def execute_workflow(self, workflow, classification):
        results = []

        # Execute modules in optimal order
        for module_name in classification['modules']:
            module = self.modules[module_name]
            result = module.execute(
                workflow,
                mecw_budget=classification['token_budget'] //
                len(classification['modules'])
            )
            results.append(result)

        return self.synthesize_results(results)

Step 3 – Coordinate MECW (mcp-code-execution:coordinate-mecw)

Cross-Module MECW Management

  • Monitor total context usage across all modules
  • Enforce 50% context rule globally
  • Coordinate external state management
  • Implement MECW emergency protocols

Step 4 – Synthesize Results (mcp-code-execution:synthesize-results)

Result Integration

def synthesize_module_results(module_results):
    """Combine results from MCP modules into structured output"""

    return {
        'status': 'completed',
        'token_savings': calculate_savings(module_results),
        'mecw_compliance': verify_mecw_rules(module_results),
        'hallucination_risk': assess_hallucination_prevention(module_results),
        'results': consolidate_results(module_results)
    }

Module Integration

With Context Optimization Hub

  • Receives high-level MECW strategy from context-optimization
  • Returns detailed execution metrics and compliance data
  • Coordinates token budget allocation

Performance Skills Integration

  • Leverages python-performance-optimization through mcp-patterns
  • Aligns with cpu-gpu-performance for resource-aware execution
  • Ensures optimizations maintain MECW compliance

Emergency Protocols

Hub-Level Emergency Response

When MECW limits exceeded:

  1. Delegates immediately to mcp-validation for risk assessment
  2. Route to mcp-subagents for further decomposition
  3. Apply compression through mcp-patterns
  4. Return minimal summary to preserve context

Success Metrics

  • Workflow Success Rate: >95% successful module coordination
  • MECW Compliance: 100% adherence to 50% context rule
  • Token Efficiency: Maintain >80% savings vs traditional methods
  • Module Coordination: <5% overhead for hub orchestration