| name | mcp-code-execution |
| description | Transform tool-heavy workflows into MCP code execution patterns using MECW principles for optimized token savings and hallucination prevention. |
| location | plugin |
| token_budget | 200 |
| progressive_loading | true |
| dependencies | [object Object] |
MCP Code Execution Hub
Quick Start
Use specialized MCP modules for specific tasks:
- mcp-subagents for workflow decomposition
- mcp-patterns for transformation templates
- mcp-validation for hallucination prevention
When to Use
- Automatic: Keywords:
code execution,MCP,tool chain,data pipeline,MECW - Tool Chains: >3 tools chained sequentially
- Data Processing: Large datasets (>10k rows) or files (>50KB)
- Context Pressure: Current usage >25% of total window (proactive context management)
Core Hub Responsibilities
- Orchestrates MCP code execution workflow
- Routes to appropriate specialized modules
- Coordinates MECW compliance across submodules
- Manages token budget allocation for submodules
Required TodoWrite Items
mcp-code-execution:assess-workflowmcp-code-execution:route-to-modulesmcp-code-execution:coordinate-mecwmcp-code-execution:synthesize-results
Step 1 – Assess Workflow (mcp-code-execution:assess-workflow)
Workflow Classification
def classify_workflow_for_mecw(workflow):
"""Determine appropriate MCP modules and MECW strategy"""
if has_tool_chains(workflow) and workflow.complexity == 'high':
return {
'modules': ['mcp-subagents', 'mcp-patterns'],
'mecw_strategy': 'aggressive',
'token_budget': 600
}
elif workflow.data_size > '10k_rows':
return {
'modules': ['mcp-patterns', 'mcp-validation'],
'mecw_strategy': 'moderate',
'token_budget': 400
}
else:
return {
'modules': ['mcp-patterns'],
'mecw_strategy': 'conservative',
'token_budget': 200
}
MECW Risk Assessment
Delegate to mcp-validation module for detailed risk analysis:
def delegate_mecw_assessment(workflow):
return mcp_validation_assess_mecw_risk(
workflow,
hub_allocated_tokens=self.token_budget * 0.5
)
Step 2 – Route to Modules (mcp-code-execution:route-to-modules)
Module Orchestration
class MCPExecutionHub:
def __init__(self):
self.modules = {
'mcp-subagents': MCPSubagentsModule(),
'mcp-patterns': MCPatternsModule(),
'mcp-validation': MCPValidationModule()
}
def execute_workflow(self, workflow, classification):
results = []
# Execute modules in optimal order
for module_name in classification['modules']:
module = self.modules[module_name]
result = module.execute(
workflow,
mecw_budget=classification['token_budget'] //
len(classification['modules'])
)
results.append(result)
return self.synthesize_results(results)
Step 3 – Coordinate MECW (mcp-code-execution:coordinate-mecw)
Cross-Module MECW Management
- Monitor total context usage across all modules
- Enforce 50% context rule globally
- Coordinate external state management
- Implement MECW emergency protocols
Step 4 – Synthesize Results (mcp-code-execution:synthesize-results)
Result Integration
def synthesize_module_results(module_results):
"""Combine results from MCP modules into structured output"""
return {
'status': 'completed',
'token_savings': calculate_savings(module_results),
'mecw_compliance': verify_mecw_rules(module_results),
'hallucination_risk': assess_hallucination_prevention(module_results),
'results': consolidate_results(module_results)
}
Module Integration
With Context Optimization Hub
- Receives high-level MECW strategy from context-optimization
- Returns detailed execution metrics and compliance data
- Coordinates token budget allocation
Performance Skills Integration
- Leverages python-performance-optimization through mcp-patterns
- Aligns with cpu-gpu-performance for resource-aware execution
- Ensures optimizations maintain MECW compliance
Emergency Protocols
Hub-Level Emergency Response
When MECW limits exceeded:
- Delegates immediately to mcp-validation for risk assessment
- Route to mcp-subagents for further decomposition
- Apply compression through mcp-patterns
- Return minimal summary to preserve context
Success Metrics
- Workflow Success Rate: >95% successful module coordination
- MECW Compliance: 100% adherence to 50% context rule
- Token Efficiency: Maintain >80% savings vs traditional methods
- Module Coordination: <5% overhead for hub orchestration