Claude Code Plugins

Community-maintained marketplace

Feedback

Generate high-quality synthetic datasets using statistical samplers and Claude's native LLM capabilities. Use when users ask to create synthetic data, generate datasets, create fake/mock data, generate test data, training data, or any data generation task. Supports CSV, JSON, JSONL, Parquet output. Adapted from NVIDIA NeMo DataDesigner (Apache 2.0).

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name data-designer
description Generate high-quality synthetic datasets using statistical samplers and Claude's native LLM capabilities. Use when users ask to create synthetic data, generate datasets, create fake/mock data, generate test data, training data, or any data generation task. Supports CSV, JSON, JSONL, Parquet output. Adapted from NVIDIA NeMo DataDesigner (Apache 2.0).

Data Designer

Generate synthetic datasets combining statistical samplers with Claude's LLM capabilities. No external API keys required.

Workflow

  1. Clarify requirements - Ask about purpose, columns, size, format
  2. Create schema - Write dataset_schema.json defining columns
  3. Generate preview - Run batch_generator.py for 3-5 rows
  4. Iterate - Refine based on feedback
  5. Generate full dataset - Batch generate, then merge
  6. Deliver - Export to requested format

Column Types

Statistical Samplers (No LLM)

Type Description Key Params
category Weighted random choice values, weights
subcategory Hierarchical (parent-based) mapping, category
uniform Uniform distribution low, high, dtype
gaussian Normal distribution mean, std, min_val, max_val
bernoulli Binary probability p, true_value, false_value
poisson Poisson distribution mean
datetime Random dates start, end, format
person Synthetic personas fields, age_range, locale
uuid Unique IDs prefix, format

LLM Columns (Claude generates)

Type Description
llm_text Free-form text
llm_code Code with syntax validation
llm_structured JSON matching schema
llm_judge Quality scoring

Schema Format

Create dataset_schema.json:

{
  "name": "dataset_name",
  "seed": 42,
  "columns": [
    {"name": "category", "type": "category", "params": {"values": ["A","B"], "weights": [0.6,0.4]}},
    {"name": "text", "type": "llm_text", "prompt": "Write about {{ category }}.", "depends_on": ["category"]}
  ],
  "output": {"format": "csv", "filename": "output"}
}

For full schema reference: references/schema.md

Jinja2 Templating

Reference columns in prompts:

Write a {{ rating }}-star review for {{ product_name }} by {{ customer.first_name }}.

Supports: {{ var }}, {{ obj.field }}, {% if %}, filters

Scripts

Generate Data

# Preview
python scripts/batch_generator.py --schema schema.json --rows 5 --output preview.json --preview

# Full generation
python scripts/batch_generator.py --schema schema.json --rows 100 --batch-size 20 --output batches/

Merge & Export

python scripts/merger.py --input batches/ --output dataset.csv --flatten

Formats: csv, json, jsonl, parquet

Generation Strategy

  1. Sampler columns first - Python scripts, fast
  2. LLM columns in dependency order - Topological sort by depends_on
  3. Batch processing - Generate in batches of 20-50 for large datasets

For LLM columns, Claude generates directly:

  • Render Jinja2 prompt with row data
  • Generate content
  • Validate if configured
  • Retry on failure (max 3)

Examples

Simple:

"Generate 50 product reviews with ratings 1-5"

Complex:

"Create 200 support tickets with: ticket_id (UUID), customer (name, email), category (billing/technical/general), priority (1-5 gaussian), description (LLM)"

Code:

"Generate 100 Python functions with description, code (validated), tests"

Tips

  • Use seed for reproducibility
  • Preview first, then scale
  • Keep LLM prompts specific
  • Use subcategory for correlated data

Attribution

Adapted from NVIDIA NeMo DataDesigner (Apache 2.0).