Claude Code Plugins

Community-maintained marketplace

Feedback

python-json-parsing

@basher83/lunar-claude
0
0

>

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name python-json-parsing
description Python JSON parsing best practices covering performance optimization (orjson/msgspec), handling large files (streaming/JSONL), security (injection prevention), and advanced querying (JSONPath/JMESPath). Use when working with JSON data, parsing APIs, handling large JSON files, or optimizing JSON performance.

Python JSON Parsing Best Practices

Comprehensive guide to JSON parsing in Python with focus on performance, security, and scalability.

Quick Start

Basic JSON Parsing

import json

# Parse JSON string
data = json.loads('{"name": "Alice", "age": 30}')

# Parse JSON file
with open("data.json", "r", encoding="utf-8") as f:
    data = json.load(f)

# Write JSON file
with open("output.json", "w", encoding="utf-8") as f:
    json.dump(data, f, indent=2)

Key Rule: Always specify encoding="utf-8" when reading/writing files.

When to Use This Skill

Use this skill when:

  • Working with JSON APIs or data interchange
  • Optimizing JSON performance in high-throughput applications
  • Handling large JSON files (> 100MB)
  • Securing applications against JSON injection
  • Extracting data from complex nested JSON structures

Performance: Choose the Right Library

Library Comparison (10,000 records benchmark)

Library Serialize (s) Deserialize (s) Best For
orjson 0.42 1.27 FastAPI, web APIs (3.9x faster)
msgspec 0.49 0.93 Maximum performance (1.7x faster deserialization)
json (stdlib) 1.62 1.62 Universal compatibility
ujson 1.41 1.85 Drop-in replacement (2x faster)

Recommendation:

  • Use orjson for FastAPI/web APIs (native support, fastest serialization)
  • Use msgspec for data pipelines (fastest overall, typed validation)
  • Use json when compatibility is critical

Installation

# High-performance libraries
pip install orjson msgspec ujson

# Advanced querying
pip install jsonpath-ng jmespath

# Streaming large files
pip install ijson

# Schema validation
pip install jsonschema

Large Files: Streaming Strategies

For files > 100MB, avoid loading into memory.

Strategy 1: JSONL (JSON Lines)

Convert large JSON arrays to line-delimited format:

# Stream process JSONL
with open("large.jsonl", "r") as infile, open("output.jsonl", "w") as outfile:
    for line in infile:
        obj = json.loads(line)
        obj["processed"] = True
        outfile.write(json.dumps(obj) + "\n")

Strategy 2: Streaming with ijson

import ijson

# Process large JSON without loading into memory
with open("huge.json", "rb") as f:
    for item in ijson.items(f, "products.item"):
        process(item)  # Handle one item at a time

See: patterns/streaming-large-json.md

Security: Prevent JSON Injection

Critical Rules:

  1. Always use json.loads(), never eval()
  2. Validate input with jsonschema
  3. Sanitize user input before serialization
  4. Escape special characters (" and \)

Vulnerable Code:

# NEVER DO THIS
username = request.GET['username']  # User input: admin", "role": "admin
json_string = f'{{"user":"{username}","role":"user"}}'
# Result: privilege escalation

Secure Code:

# Use json.dumps for serialization
data = {"user": username, "role": "user"}
json_string = json.dumps(data)  # Properly escaped

See: anti-patterns/security-json-injection.md, anti-patterns/eval-usage.md

Advanced: JSONPath for Complex Queries

Extract data from nested JSON without complex loops:

import jsonpath_ng as jp

data = {
    "products": [
        {"name": "Apple", "price": 12.88},
        {"name": "Peach", "price": 27.25}
    ]
}

# Filter by price
query = jp.parse("products[?price>20].name")
results = [match.value for match in query.find(data)]
# Output: ["Peach"]

Key Operators:

  • $ - Root selector
  • .. - Recursive descendant
  • * - Wildcard
  • [?<predicate>] - Filter (e.g., [?price > 20])
  • [start:end:step] - Array slicing

See: patterns/jsonpath-querying.md

Custom Objects: Serialization

Handle datetime, UUID, Decimal, and custom classes:

from datetime import datetime
import json

class CustomEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, datetime):
            return obj.isoformat()
        if isinstance(obj, set):
            return list(obj)
        return super().default(obj)

# Usage
data = {"timestamp": datetime.now(), "tags": {"python", "json"}}
json_str = json.dumps(data, cls=CustomEncoder)

See: patterns/custom-object-serialization.md

Performance Checklist

  • Use orjson/msgspec for high-throughput applications
  • Specify UTF-8 encoding when reading/writing files
  • Use streaming (ijson/JSONL) for files > 100MB
  • Minify JSON for production (separators=(',', ':'))
  • Pretty-print for development (indent=2)

Security Checklist

  • Never use eval() for JSON parsing
  • Validate input with jsonschema
  • Sanitize user input before serialization
  • Use json.dumps() to prevent injection
  • Escape special characters in user data

Reference Documentation

Performance:

  • reference/python-json-parsing-best-practices-2025.md - Comprehensive research with benchmarks

Patterns:

  • patterns/streaming-large-json.md - ijson and JSONL strategies
  • patterns/custom-object-serialization.md - Handle datetime, UUID, custom classes
  • patterns/jsonpath-querying.md - Advanced nested data extraction

Security:

  • anti-patterns/security-json-injection.md - Prevent injection attacks
  • anti-patterns/eval-usage.md - Why never to use eval()

Examples:

  • examples/high-performance-parsing.py - orjson and msgspec code
  • examples/large-file-streaming.py - Streaming with ijson
  • examples/secure-validation.py - jsonschema validation

Tools:

  • tools/json-performance-benchmark.py - Benchmark different libraries