| name | generate-note |
| type | python |
| description | Generate new text or code content from scratch using natural language prompt via LLM. Use to collect thoughts or generate a coherent statement on a topic |
Generate Note Tool
LLM-based content generation tool. Creates new text or code from scratch using natural language instructions.
Purpose
Create new content from scratch. For editing existing content, use refine instead. For creating content, use generate-note.
Input
prompt: Generation instruction (required, e.g., "Write a tic-tac-toe game", "Explain quantum entanglement")style: "code" or "text" (optional, default: "text")context: Optional context - Note ID, Collection ID, or plain text string. Arrays/Lists are NOT allowed - create a Collection first
Output
Returns Note containing generated content (text or code).
Behavior & Performance
- Style options:
- "text" (default): Generates prose, summaries, explanations (temperature=0.7)
- "code": Generates code with stricter formatting (temperature=0.2)
- Context assembly: When generating content that needs background, search/load relevant Notes, assemble into Collection, then generate with context pointing to Collection
Guidelines
- Use for creating NEW content from scratch
- Use
refinefor editing/transforming EXISTING Note content - Context can be Collection ID (concatenates all Notes), Note ID (uses Note content), or plain text string
- Do NOT pass arrays/lists as context - create a Collection first
- For iterative refinement of generated content, use
refinetool on the generated Note
Usage Examples
Generate code:
{"type":"generate-note","prompt":"Write a Python function to calculate fibonacci numbers","style":"code","out":"$fib_code"}
Generate text:
{"type":"generate-note","prompt":"Write a summary of quantum computing","out":"$summary"}
Generate with context Note:
{"type":"generate-note","prompt":"Refactor this code to use async/await","style":"code","context":"$existing_code","out":"$refactored"}
Generate with context Collection:
{"type":"generate-note","prompt":"Write a response based on conversation history","context":"$context_collection","out":"$response"}