| name | model-detection |
| description | Universal model detection and capability assessment for optimal cross-model compatibility |
| version | 1.0.0 |
Overview
This skill provides universal model detection and capability assessment to optimize the Autonomous Agent Plugin across different LLM models (Claude Sonnet, Claude 4.5, GLM-4.6, etc.).
Model Detection Algorithm
Primary Detection Methods
System Context Analysis:
// Check for model indicators in system context const modelIndicators = { 'claude-sonnet-4.5': { pattern: /sonnet.*4\.5|4\.5.*sonnet/i, confidence: 0.9 }, 'claude-haiku-4.5': { pattern: /haiku.*4\.5|4\.5.*haiku/i, confidence: 0.9 }, 'claude-opus-4.1': { pattern: /opus.*4\.1|4\.1.*opus/i, confidence: 0.9 }, 'glm-4.6': { pattern: /glm|4\.6/i, confidence: 0.9 }, 'claude-haiku': { pattern: /haiku(?!\.*4\.5)/i, confidence: 0.8 } }Performance Pattern Recognition:
// Analyze execution patterns to identify model const performanceSignatures = { 'claude-sonnet-4.5': { reasoning: 'nuanced', speed: 'fast', adaptability: 'high' }, 'claude-haiku-4.5': { reasoning: 'focused', speed: 'very_fast', adaptability: 'high' }, 'claude-opus-4.1': { reasoning: 'enhanced', speed: 'very_fast', adaptability: 'very_high' }, 'glm-4.6': { reasoning: 'structured', speed: 'moderate', adaptability: 'medium' } }Capability Assessment:
// Test specific capabilities const capabilityTests = { nuanced_reasoning: testAmbiguousScenario, structured_execution: testLiteralInterpretation, context_switching: testMultiTaskContext, adaptive_learning: testPatternRecognition }
Model-Specific Configurations
Claude Sonnet 4.5 Configuration
{
"model_type": "claude-sonnet-4.5",
"capabilities": {
"reasoning_style": "nuanced",
"context_management": "adaptive",
"skill_loading": "progressive_disclosure",
"error_handling": "pattern_based",
"communication_style": "natural_flow"
},
"performance_targets": {
"execution_time_multiplier": 1.0,
"quality_score_target": 90,
"autonomy_level": "high",
"delegation_style": "parallel_context_merge"
},
"optimizations": {
"use_context_switching": true,
"apply_improvisation": true,
"weight_based_decisions": true,
"predictive_delegation": true
}
}
Claude Haiku 4.5 Configuration
{
"model_type": "claude-haiku-4.5",
"capabilities": {
"reasoning_style": "focused",
"context_management": "efficient",
"skill_loading": "selective_disclosure",
"error_handling": "fast_prevention",
"communication_style": "concise"
},
"performance_targets": {
"execution_time_multiplier": 0.8,
"quality_score_target": 88,
"autonomy_level": "medium",
"delegation_style": "focused_parallel"
},
"optimizations": {
"use_fast_execution": true,
"apply_focused_reasoning": true,
"efficient_delegation": true,
"streamlined_processing": true
}
}
Claude Opus 4.1 Configuration
{
"model_type": "claude-opus-4.1",
"capabilities": {
"reasoning_style": "enhanced",
"context_management": "predictive",
"skill_loading": "intelligent_progressive",
"error_handling": "predictive_prevention",
"communication_style": "insightful"
},
"performance_targets": {
"execution_time_multiplier": 0.9,
"quality_score_target": 95,
"autonomy_level": "very_high",
"delegation_style": "predictive_parallel"
},
"optimizations": {
"use_context_switching": true,
"apply_improvisation": true,
"anticipatory_actions": true,
"enhanced_pattern_learning": true
}
}
GLM-4.6 Configuration
{
"model_type": "glm-4.6",
"capabilities": {
"reasoning_style": "structured",
"context_management": "sequential",
"skill_loading": "complete_loading",
"error_handling": "rule_based",
"communication_style": "structured_explicit"
},
"performance_targets": {
"execution_time_multiplier": 1.25,
"quality_score_target": 88,
"autonomy_level": "medium",
"delegation_style": "sequential_clear"
},
"optimizations": {
"use_structured_decisions": true,
"explicit_instructions": true,
"sequential_processing": true,
"clear_handoffs": true
}
}
Adaptive Execution Strategies
Skill Loading Adaptation
Claude Models:
function loadSkillsForClaude(skills) {
// Progressive disclosure with context merging
return skills.map(skill => ({
...skill,
loading_strategy: 'progressive',
context_aware: true,
weight_based: true
}));
}
GLM Models:
function loadSkillsForGLM(skills) {
// Complete upfront loading with clear structure
return skills.map(skill => ({
...skill,
loading_strategy: 'complete',
explicit_criteria: true,
priority_sequenced: true
}));
}
Communication Style Adaptation
Output Formatting by Model:
| Model | Terminal Style | File Report Style | Reasoning |
|---|---|---|---|
| Claude Sonnet | Natural flow | Insightful analysis | Nuanced communication |
| Claude 4.5 | Concise insights | Enhanced context | Predictive communication |
| GLM-4.6 | Structured lists | Detailed procedures | Explicit communication |
Error Recovery Adaptation
Claude Models: Pattern-based prediction and contextual prevention GLM Models: Rule-based detection and structured recovery protocols
Capability Testing Functions
Nuanced Reasoning Test
function testNuancedReasoning() {
// Present ambiguous scenario requiring subtle judgment
// Evaluate response quality and contextual awareness
return score >= 0.8; // True for Claude models
}
Structured Execution Test
function testStructuredExecution() {
// Present clear, sequential task
// Evaluate adherence to structured approach
return score >= 0.8; // True for GLM models
}
Model Detection Implementation
Auto-Detection Function
function detectModel() {
// Step 1: Check system context indicators
const contextResult = analyzeSystemContext();
// Step 2: Test capability patterns
const capabilityResult = testCapabilities();
// Step 3: Analyze performance signature
const performanceResult = analyzePerformancePattern();
// Step 4: Combine results with confidence scoring
return combineDetections(contextResult, capabilityResult, performanceResult);
}
Configuration Loading
function loadModelConfiguration(detectedModel) {
const baseConfig = getBaseModelConfig(detectedModel);
const adaptiveConfig = generateAdaptiveConfig(detectedModel);
return mergeConfigurations(baseConfig, adaptiveConfig);
}
Usage Guidelines
When to Apply Model Detection
- Plugin Initialization: First load of any agent
- Agent Delegation: Before delegating to specialized agents
- Skill Loading: Before loading any skill package
- Error Recovery: When selecting recovery strategy
- Performance Optimization: When setting execution targets
Integration Points
- Orchestrator Agent: Use for autonomous decision-making adaptation
- All Specialized Agents: Use for model-specific behavior
- Skill System: Use for loading strategy selection
- Quality Controller: Use for model-appropriate quality targets
Fallback Strategy
If model detection fails:
- Default to Conservative Settings: Use structured, explicit approach
- Basic Capability Tests: Run simplified detection tests
- Universal Configuration: Apply cross-model compatible settings
- Performance Monitoring: Continuously assess and adapt
Validation Metrics
Detection Accuracy
- Target: >95% correct model identification
- Measurement: Compare detected vs actual model capabilities
- Validation: Test across all supported models
Performance Improvement
- Target: >10% improvement for GLM models
- Target: >2% improvement for Claude models
- Measurement: Compare pre/post optimization performance
Adaptation Success
- Target: >90% successful adaptation scenarios
- Measurement: Monitor successful autonomous operations
- Validation: Test with diverse task types
This skill ensures the Autonomous Agent Plugin performs optimally across all supported LLM models while maintaining backward compatibility and future-proofing for new models.