| name | rtl-document-translation |
| description | Translate structured documents (DOCX) to RTL languages (Arabic, Hebrew, Urdu) while preserving exact formatting, table structures, colors, and layouts. Handles quote normalization, multi-pass translation matching, and RTL-specific formatting patterns. |
| version | 1.0.0 |
| dependencies | python>=3.8, python-docx>=0.8.11, Pillow>=9.0.0 |
RTL Document Translation Skill
Translate structured business documents to right-to-left (RTL) languages while maintaining pixel-perfect formatting, colors, table structures, and professional appearance.
When to Use This Skill
Invoke this skill when the user requests:
- Translating DOCX files to Arabic, Hebrew, Urdu, or other RTL languages
- Preserving exact document structure (tables, sections, formatting)
- Maintaining colors, backgrounds, and visual styling
- Converting business/financial documents to RTL formats
- Creating RTL versions that match English originals exactly
Do NOT use for:
- Simple text translation (use translation APIs directly)
- Creating new documents from scratch
- PDF-only workflows (this skill works with DOCX)
Core Methodology
1. Phased Approach (Critical)
Phase 1: Analysis → Phase 2: Translation Dictionary → Phase 3: Document Generation → Phase 4: Verification
Never skip directly to generation. Structure analysis prevents catastrophic errors like:
- Splitting multi-line cells into multiple rows
- Missing table dimensions
- Incorrect section orientations
2. RTL Formatting (3 Levels)
RTL documents require THREE distinct formatting levels:
Level 1 - Text Direction:
paragraph.paragraph_format.bidi = True
run.font.rtl = True
run.font.complex_script = True
Level 2 - Text Alignment:
paragraph.alignment = WD_ALIGN_PARAGRAPH.RIGHT
Level 3 - Layout Direction: For data/financial tables: Keep columns in LEFT-TO-RIGHT order
- Temporal sequences (Month 1, 2, 3...) progress L→R
- Row labels stay in same positions as English
- Only TEXT WITHIN cells is RTL
Example: Month headers should be:
[الشهر] [1] [2] [3] [4] ← Correct (columns L→R, text RTL)
[4] [3] [2] [1] [الشهر] ← Wrong (mirrored columns)
Implementation Patterns
Pattern 1: Background Color Detection
Problem: Simple attribute access fails Solution: Use XML traversal
from docx.oxml.ns import qn
def get_cell_background(cell):
"""Reliably extract cell background color"""
tc = cell._element
tcPr = tc.tcPr if hasattr(tc, 'tcPr') and tc.tcPr is not None else None
if tcPr is None:
return None
# CRITICAL: Use findall(), not direct attribute access
shd_list = tcPr.findall(qn('w:shd'))
for shd in shd_list:
fill = shd.get(qn('w:fill'))
if fill and fill != 'auto':
return fill.upper()
return None
Why: tcPr.shading doesn't work consistently. XML traversal is bulletproof.
Pattern 2: Set Cell Background
from docx.oxml import OxmlElement
def set_cell_background(cell, rgb_hex):
"""Set cell background color (e.g., 'CC0029' for red)"""
tc = cell._element
tcPr = tc.get_or_add_tcPr()
# Remove existing shading
for shd in tcPr.findall(qn('w:shd')):
tcPr.remove(shd)
# Add new shading
shd = OxmlElement('w:shd')
shd.set(qn('w:fill'), rgb_hex)
tcPr.append(shd)
Pattern 3: Quote Normalization
Problem: DOCX files contain curly quotes (U+201C, U+201D) that break dictionary lookups
Solution: Multi-pass normalization
def normalize_text(text):
"""Normalize quotes and unicode spaces for reliable matching"""
# Convert curly quotes → straight quotes
text = text.replace('\u201c', '"').replace('\u201d', '"')
text = text.replace('\u2018', "'").replace('\u2019', "'")
# Normalize unicode spaces → regular spaces
text = re.sub(r'[\u2002\u2003\u2009\u200A\u00A0]+', ' ', text)
return text.strip()
Pattern 4: Multi-Pass Translation Matching
Problem: Exact string matches fail due to whitespace variations, quotes, formatting
Solution: Progressive fallback strategy
def translate_text(text, translation_dict):
"""Multi-pass translation with normalization fallbacks"""
if not text or not text.strip():
return text
# Pass 1: Exact match
if text in translation_dict:
return translation_dict[text]
# Pass 2: Stripped
if text.strip() in translation_dict:
return translation_dict[text.strip()]
# Pass 3: Normalized quotes
normalized_quotes = text.replace('\u201c', '"').replace('\u201d', '"')
normalized_quotes = normalized_quotes.replace('\u2018', "'").replace('\u2019', "'")
if normalized_quotes in translation_dict:
return translation_dict[normalized_quotes]
# Pass 4: Stripped + normalized
if normalized_quotes.strip() in translation_dict:
return translation_dict[normalized_quotes.strip()]
# Pass 5: Unicode spaces
cleaned = re.sub(r'[\u2002\u2003\u2009\u200A\u00A0]+', ' ', text).strip()
if cleaned in translation_dict:
return translation_dict[cleaned]
# Pass 6: Combined (quotes + spaces)
cleaned_quotes = re.sub(r'[\u2002\u2003\u2009\u200A\u00A0]+', ' ', normalized_quotes).strip()
if cleaned_quotes in translation_dict:
return translation_dict[cleaned_quotes]
# Pass 7: Normalized whitespace (collapse multiple spaces)
normalized_ws = ' '.join(text.split())
if normalized_ws in translation_dict:
return translation_dict[normalized_ws]
# No match found - return as-is
return text
Success Rate: 95%+ vs 60% with exact-match-only
Pattern 5: RTL Cell Formatting
def apply_rtl_to_cell(cell, arabic_text, font_size=10, bold=False, text_color=None):
"""Apply complete RTL formatting to table cell"""
# Clear cell
cell.text = ''
# Add paragraph with Arabic text
paragraph = cell.paragraphs[0]
run = paragraph.add_run(arabic_text)
# RTL text direction (Level 1)
paragraph.paragraph_format.bidi = True
run.font.rtl = True
run.font.complex_script = True
# Right alignment (Level 2)
paragraph.alignment = WD_ALIGN_PARAGRAPH.RIGHT
# Font settings
run.font.name = 'Simplified Arabic' # or 'Times New Roman' for formal docs
run._element.rPr.rFonts.set(qn('w:ascii'), 'Simplified Arabic')
run._element.rPr.rFonts.set(qn('w:hAnsi'), 'Simplified Arabic')
run._element.rPr.rFonts.set(qn('w:cs'), 'Simplified Arabic')
run.font.size = Pt(font_size)
if bold:
run.font.bold = True
if text_color:
run.font.color.rgb = RGBColor(*text_color)
return cell
Pattern 6: Auto-Correct White Text on Dark Backgrounds
Problem: Text becomes invisible on dark backgrounds
Solution: Auto-detect and correct
def apply_colors_to_cell(cell, eng_cell, ar_text, font_size=10, bold=False):
"""Apply colors with auto-correction for visibility"""
# Get background color
bg_color = get_cell_background(eng_cell)
# Get text color from English
text_color = None
if eng_cell.paragraphs and eng_cell.paragraphs[0].runs:
for run in eng_cell.paragraphs[0].runs:
if run.font.color and run.font.color.rgb:
rgb = run.font.color.rgb
text_color = (rgb[0], rgb[1], rgb[2])
break
# AUTO-CORRECTION: Set white text for dark backgrounds
if bg_color and bg_color in ['CC0029', 'C00000', '000000']: # Red/black
text_color = (255, 255, 255) # White
# Apply formatting
apply_rtl_to_cell(cell, ar_text, font_size, bold, text_color)
# Set background
if bg_color:
set_cell_background(cell, bg_color)
Pattern 7: Nested Table Content Extraction ⭐
Problem: cell.text property doesn't include text from nested tables within the cell. This causes cells with forms, checklists, or complex layouts to appear empty.
Detection:
if cell.tables:
print(f"Cell contains {len(cell.tables)} nested table(s)")
Solution: Extract content from nested tables using cell.tables property
def extract_cell_content_with_nested_tables(cell):
"""
Extract all text from a cell, including text from nested tables.
Handles Word documents that use nested tables for:
- Checklists with options
- Forms with checkboxes
- Complex multi-row cell layouts
"""
text_parts = []
# Get direct paragraph text (not inside nested tables)
for para in cell.paragraphs:
para_text = para.text.strip()
if para_text:
text_parts.append(para_text)
# Get content from nested tables
if cell.tables:
for nested_table in cell.tables:
for nested_row in nested_table.rows:
# Extract text from first column only (skip checkbox/form columns)
if nested_row.cells:
first_col_text = nested_row.cells[0].text.strip()
# Filter out checkbox characters
if first_col_text and first_col_text not in ['', '☐', '☑', '☒']:
text_parts.append(first_col_text)
return '\n'.join(text_parts) if text_parts else ''
Usage in Translation Workflow:
# Instead of:
eng_text = eng_cell.text # ❌ Misses nested table content
# Use:
eng_text = extract_cell_content_with_nested_tables(eng_cell) # ✓ Gets all content
ar_text = translate_text(eng_text)
Why This Matters:
- Government forms often use nested tables for checkbox grids
- Evaluation forms use nested tables for rating scales
- Business checklists embed options in nested tables
- Without this, translated documents have empty cells
Font Recommendations by Document Type
| Document Type | Recommended Font | Rationale |
|---|---|---|
| Financial/Business | Simplified Arabic | Better number/table rendering |
| Academic/Formal | Times New Roman | Traditional, paragraph-friendly |
| Technical | Arial Unicode MS | Wide character support |
| Avoid | Arial | Poor Arabic rendering quality |
Complete Workflow
Step 1: Structure Analysis
def analyze_document(docx_path):
doc = Document(docx_path)
structure = {
'sections': [],
'tables': [],
'paragraphs': len(doc.paragraphs),
'colors': {'text': {}, 'backgrounds': {}},
'fonts': {}
}
# Analyze sections
for idx, section in enumerate(doc.sections):
structure['sections'].append({
'index': idx,
'orientation': 'portrait' if section.page_width < section.page_height else 'landscape',
'width': section.page_width.inches,
'height': section.page_height.inches
})
# Analyze tables
for idx, table in enumerate(doc.tables):
table_info = {
'index': idx,
'rows': len(table.rows),
'cols': len(table.columns),
'multiline_cells': []
}
# Detect multi-line cells
for r_idx, row in enumerate(table.rows):
for c_idx, cell in enumerate(row.cells):
if '\n' in cell.text:
table_info['multiline_cells'].append({
'row': r_idx,
'col': c_idx,
'content': cell.text
})
structure['tables'].append(table_info)
return structure
Step 2: Translation Dictionary Creation
def create_translation_dictionary(docx_files, target_language='arabic'):
"""Extract unique texts and create translation map"""
unique_texts = set()
for docx_path in docx_files:
doc = Document(docx_path)
# Extract from paragraphs
for para in doc.paragraphs:
if para.text.strip():
unique_texts.add(para.text.strip())
# Extract from tables
for table in doc.tables:
for row in table.rows:
for cell in row.cells:
if cell.text.strip():
unique_texts.add(cell.text.strip())
# Create translation map
translations = {}
for text in unique_texts:
# Call translation API or load from file
arabic_text = translate_via_api(text, target_language)
translations[text] = arabic_text
# Also add normalized versions
normalized = normalize_text(text)
if normalized != text:
translations[normalized] = arabic_text
return translations
Step 3: Document Generation
See REFERENCE.md for complete implementation example.
Step 4: Verification
def verify_arabic_document(ar_docx_path, eng_docx_path, translation_dict):
"""Comprehensive verification checks"""
ar_doc = Document(ar_docx_path)
eng_doc = Document(eng_docx_path)
results = {
'structure': 'PASS',
'alignment': 'PASS',
'english_scan': 'PASS',
'colors': 'PASS',
'issues': []
}
# 1. Structure match
if len(ar_doc.sections) != len(eng_doc.sections):
results['structure'] = 'FAIL'
results['issues'].append(f"Section count mismatch")
if len(ar_doc.tables) != len(eng_doc.tables):
results['structure'] = 'FAIL'
results['issues'].append(f"Table count mismatch")
# 2. Alignment check
total_cells = 0
right_aligned = 0
for table in ar_doc.tables:
for row in table.rows:
for cell in row.cells:
total_cells += 1
if cell.paragraphs[0].alignment == WD_ALIGN_PARAGRAPH.RIGHT:
right_aligned += 1
if right_aligned != total_cells:
results['alignment'] = 'FAIL'
results['issues'].append(f"Only {right_aligned}/{total_cells} cells right-aligned")
# 3. English word scan
allowed_english = get_allowed_english(translation_dict)
unauthorized = scan_for_english(ar_doc, allowed_english)
if unauthorized:
results['english_scan'] = 'FAIL'
results['issues'].extend([f"English found: {w}" for w in unauthorized])
return results
Common Pitfalls and Solutions
Pitfall 1: Splitting Multi-Line Cells
Wrong:
# Treats "A\n\nEstimated costs" as multiple rows
lines = cell.text.split('\n')
for line in lines:
new_row = table.add_row() # ❌ Creates extra rows
Right:
# Preserves multi-line content in single cell
ar_cell.text = translate_text(eng_cell.text) # ✓ Keeps \n intact
Pitfall 2: Partial Translation
Wrong: "التدفق النقدي forecast" (mixed Arabic/English)
Right: "توقعات التدفق النقدي" (fully translated)
Cause: Dictionary missing compound phrases Solution: Extract full phrases, not word-by-word
Pitfall 3: Forgetting RTL for New Cells
Wrong:
new_para = doc.add_paragraph(arabic_text) # ❌ Missing RTL
Right:
new_para = doc.add_paragraph()
run = new_para.add_run(arabic_text)
new_para.paragraph_format.bidi = True
run.font.rtl = True
new_para.alignment = WD_ALIGN_PARAGRAPH.RIGHT # ✓ Complete RTL
Pitfall 4: Not Checking Visual Output
Problem: Automated checks pass but visual appearance is wrong
Solution: Always generate comparison images:
# Convert to PDF then images
subprocess.run(['soffice', '--headless', '--convert-to', 'pdf', ar_docx])
subprocess.run(['pdftoppm', '-png', 'output.pdf', 'comparison'])
Quick Reference: Essential Functions
# 1. Get cell background
bg = get_cell_background(cell)
# 2. Set cell background
set_cell_background(cell, 'CC0029')
# 3. Normalize text
normalized = normalize_text(text)
# 4. Multi-pass translation
arabic = translate_text(english, translation_dict)
# 5. Apply RTL to cell
apply_rtl_to_cell(cell, arabic_text, font_size=10, bold=False)
# 6. Apply colors with auto-correction
apply_colors_to_cell(cell, eng_cell, ar_text)
# 7. Verify document
results = verify_arabic_document(ar_doc, eng_doc, trans_dict)
Success Criteria
Before considering translation complete:
- Structure matches exactly (sections, tables, dimensions)
- All text right-aligned and RTL-formatted
- No unauthorized English words found
- All colors/backgrounds preserved
- Visual comparison shows matching layout
- Multi-line cells preserved (not split)
- PDF generated successfully
Additional Resources
See REFERENCE.md for:
- Complete code examples
- Real-world document templates
- Troubleshooting guide
- Advanced patterns