Claude Code Plugins

Community-maintained marketplace

Feedback

Analyze metagenomic data from environmental samples to characterize microbial communities.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name metagenomics
description Analyze metagenomic data from environmental samples to characterize microbial communities.

Metagenomics

Analyze genetic material from environmental samples to study microbial community composition and function.

Quality Control and Preprocessing

# Quality filtering with fastp
fastp -i reads_R1.fastq.gz -I reads_R2.fastq.gz \
    -o clean_R1.fastq.gz -O clean_R2.fastq.gz \
    --detect_adapter_for_pe \
    --cut_front --cut_tail \
    --html fastp_report.html

# Remove host contamination with Bowtie2
bowtie2 -x human_genome -1 clean_R1.fastq.gz -2 clean_R2.fastq.gz \
    --un-conc-gz filtered_%.fastq.gz -S /dev/null

Taxonomic Profiling with Kraken2

# Build/download database
kraken2-build --download-library bacteria --db kraken_db
kraken2-build --build --db kraken_db

# Classify reads
kraken2 --db kraken_db \
    --paired filtered_1.fastq.gz filtered_2.fastq.gz \
    --output kraken_output.txt \
    --report kraken_report.txt \
    --threads 8

# Estimate abundances with Bracken
bracken -d kraken_db -i kraken_report.txt \
    -o bracken_output.txt -w bracken_report.txt \
    -r 150 -l S

Assembly with MetaSPAdes

# Metagenomic assembly
metaspades.py -1 filtered_1.fastq.gz -2 filtered_2.fastq.gz \
    -o assembly_output/ -t 16 -m 100

# Check assembly quality
metaquast.py assembly_output/contigs.fasta \
    -o quast_output/

Binning with MetaBAT2

# Map reads to assembly
bowtie2-build contigs.fasta contigs_index
bowtie2 -x contigs_index -1 filtered_1.fastq.gz -2 filtered_2.fastq.gz \
    | samtools sort -o mapped.bam

# Generate depth file
jgi_summarize_bam_contig_depths --outputDepth depth.txt mapped.bam

# Run MetaBAT2
metabat2 -i contigs.fasta -a depth.txt -o bins/bin

# Evaluate bins with CheckM
checkm lineage_wf bins/ checkm_output/ -x fa -t 8

Functional Analysis with HUMAnN3

# Run HUMAnN3
humann --input metagenome.fastq \
    --output humann_output/ \
    --threads 8

# Gene families and pathways
humann_renorm_table --input genefamilies.tsv \
    --output genefamilies_relab.tsv \
    --units relab

# Pathway abundance
humann_barplot --input pathabundance.tsv \
    --output pathway_barplot.png \
    --sort sum

Python Analysis

import pandas as pd
import matplotlib.pyplot as plt

# Load Kraken report
def parse_kraken_report(report_file):
    """Parse Kraken2 report format."""
    columns = ['percent', 'reads_clade', 'reads_taxon',
               'rank', 'taxid', 'name']
    df = pd.read_csv(report_file, sep='\t', names=columns)
    df['name'] = df['name'].str.strip()
    return df

report = parse_kraken_report('kraken_report.txt')

# Filter to species level
species = report[report['rank'] == 'S']
species = species.nlargest(20, 'percent')

# Visualization
plt.figure(figsize=(12, 6))
plt.barh(species['name'], species['percent'])
plt.xlabel('Relative Abundance (%)')
plt.title('Top 20 Species')
plt.tight_layout()
plt.savefig('species_abundance.png')

Diversity Analysis

import numpy as np
from scipy import stats

def calculate_diversity(abundance_vector):
    """Calculate alpha diversity metrics."""
    # Normalize to proportions
    props = abundance_vector / abundance_vector.sum()
    props = props[props > 0]

    # Shannon diversity
    shannon = -np.sum(props * np.log(props))

    # Simpson diversity
    simpson = 1 - np.sum(props ** 2)

    # Richness
    richness = len(props)

    return {
        'shannon': shannon,
        'simpson': simpson,
        'richness': richness,
        'evenness': shannon / np.log(richness) if richness > 1 else 0
    }

# Compare samples with Bray-Curtis dissimilarity
from scipy.spatial.distance import braycurtis

def beta_diversity(sample1, sample2):
    """Calculate Bray-Curtis dissimilarity."""
    return braycurtis(sample1, sample2)

Common Tools

  • Kraken2/Bracken: Taxonomic classification
  • MetaPhlAn: Marker-based profiling
  • MetaSPAdes: Metagenomic assembly
  • MetaBAT2/CONCOCT: Binning
  • CheckM: Bin quality assessment
  • HUMAnN3: Functional profiling
  • Qiime2: 16S analysis pipeline