Claude Code Plugins

Community-maintained marketplace

Feedback

Pandas library for data manipulation and analysis. Use for loading CSV files, data transformation, aggregation, filtering, and creating output reports.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name pandas
description Pandas library for data manipulation and analysis. Use for loading CSV files, data transformation, aggregation, filtering, and creating output reports.

Pandas

Pandas provides powerful data structures and analysis tools for Python.

Loading and Saving Data

import pandas as pd

# Load CSV file
df = pd.read_csv('/app/data/drug_interactions.csv')

# Display info
print(df.head())
print(df.info())
print(df.columns.tolist())

# Save to CSV
df.to_csv('/app/output/results.csv', index=False)

Filtering and Selection

# Filter by severity
severe = df[df['severity'] == 'major']
moderate = df[df['severity'].isin(['moderate', 'major'])]

# Filter by multiple conditions
critical = df[(df['severity'] == 'major') & (df['documented'] == True)]

# Select specific columns
interactions = df[['drug_1', 'drug_2', 'severity']]

Aggregation and GroupBy

# Count interactions by severity
severity_counts = df['severity'].value_counts()

# Count interactions per drug
drug_counts = pd.concat([
    df['drug_1'].value_counts(),
    df['drug_2'].value_counts()
]).groupby(level=0).sum()

# Group by and aggregate
summary = df.groupby('interaction_type').agg({
    'severity': 'count',
    'documented': 'sum'
}).rename(columns={'severity': 'count'})

Creating DataFrames from Dictionaries

# From dictionary of lists
centrality_df = pd.DataFrame({
    'drug': list(drugs),
    'degree_centrality': degree_values,
    'betweenness_centrality': betweenness_values
})

# From list of dictionaries
results = []
for drug in drugs:
    results.append({
        'drug': drug,
        'degree': G.degree(drug),
        'centrality': centrality[drug]
    })
results_df = pd.DataFrame(results)

Sorting and Ranking

# Sort by centrality
sorted_df = centrality_df.sort_values('degree_centrality', ascending=False)

# Get top N
top_drugs = sorted_df.head(10)

# Add rank column
centrality_df['rank'] = centrality_df['degree_centrality'].rank(ascending=False)

Merging DataFrames

# Merge drug info with centrality
drug_info = pd.read_csv('/app/data/drug_info.csv')
merged = centrality_df.merge(drug_info, on='drug', how='left')

# Join severe interactions with drug details
severe_with_info = severe.merge(
    drug_info,
    left_on='drug_1',
    right_on='drug',
    how='left'
)

Saving Outputs

# Save filtered interactions
severe_df.to_csv('/app/output/severe_interactions.csv', index=False)

# Save with specific columns
output_cols = ['drug_1', 'drug_2', 'severity', 'interaction_type']
df[output_cols].to_csv('/app/output/interactions_summary.csv', index=False)