| name | thermodynamic-calculations |
| description | Thermodynamic calculations for battery materials. Use for Arrhenius analysis, activation energy calculations, ionic conductivity modeling, and temperature-dependent property analysis. |
Thermodynamic Calculations
Tools and formulas for thermodynamic analysis of battery electrolytes.
Physical Constants
# Gas constant
R = 8.314 # J/(mol*K)
R_kj = 0.008314 # kJ/(mol*K)
# Faraday constant
F = 96485 # C/mol
# Boltzmann constant
kB = 1.38e-23 # J/K
Arrhenius Equation
The Arrhenius equation describes temperature dependence of ionic conductivity:
import numpy as np
def arrhenius_conductivity(T, A, Ea):
"""
Calculate ionic conductivity using Arrhenius equation.
Parameters:
- T: Temperature in Kelvin
- A: Pre-exponential factor (S/cm)
- Ea: Activation energy (J/mol)
Returns:
- sigma: Ionic conductivity (S/cm)
"""
R = 8.314 # J/(mol*K)
return A * np.exp(-Ea / (R * T))
Activation Energy from Linear Fit
def calculate_activation_energy(slope):
"""
Calculate activation energy from Arrhenius plot slope.
For ln(sigma) vs 1/T plot:
slope = -Ea/R
Parameters:
- slope: Slope from linear regression of ln(sigma) vs 1/T
Returns:
- Ea_kjmol: Activation energy in kJ/mol
"""
R = 8.314 # J/(mol*K)
Ea_jmol = -slope * R
Ea_kjmol = Ea_jmol / 1000
return Ea_kjmol
Temperature Conversions
def celsius_to_kelvin(temp_c):
"""Convert Celsius to Kelvin."""
return temp_c + 273.15
def kelvin_to_celsius(temp_k):
"""Convert Kelvin to Celsius."""
return temp_k - 273.15
Complete Arrhenius Analysis
from scipy import stats
import numpy as np
def arrhenius_analysis(temp_c, conductivity):
"""
Perform complete Arrhenius analysis.
Parameters:
- temp_c: Array of temperatures in Celsius
- conductivity: Array of conductivity values (S/cm)
Returns:
- dict: Activation energy, pre-exponential factor, R-squared
"""
R = 8.314 # J/(mol*K)
# Convert to Arrhenius form
temp_k = temp_c + 273.15
inv_t = 1 / temp_k
ln_sigma = np.log(conductivity)
# Linear regression
result = stats.linregress(inv_t, ln_sigma)
# Calculate parameters
Ea_kjmol = -result.slope * R / 1000
A = np.exp(result.intercept)
r_squared = result.rvalue ** 2
return {
'activation_energy_kjmol': Ea_kjmol,
'pre_exponential_factor': A,
'r_squared': r_squared
}
Typical Values for Li-ion Electrolytes
- Activation energy: 10-40 kJ/mol
- Room temperature conductivity: 1-10 mS/cm
- Pre-exponential factor: 10^3 - 10^6 S/cm