| name | exa-context |
| description | Get code context from repositories with examples and documentation. Use when you need code snippets, implementation examples, API usage patterns, or technical documentation for programming concepts, frameworks, or libraries. |
Exa Context
Token-efficient strategies for retrieving code context using exa-ai.
Use --help to see available commands and verify usage before running:
exa-ai <command> --help
Critical Requirements
MUST follow these rules when using exa-ai context:
Shared Requirements
This skill inherits requirements from Common Requirements:
- Output format selection → All output operations
MUST Rules
- Use dynamic tokens: Default
--tokens-num dynamicadapts to content; specify exact number only when needed
SHOULD Rules
- Prefer text format: Use
--output-format textfor direct use in prompts or documentation (removes JSON wrapper overhead)
Cost Optimization
Pricing
- 1-25 results: $0.005 per search
- 26-100 results: $0.025 per search (5x more expensive)
Cost strategy:
- Default to 1-25 results: 5x cheaper, sufficient for most queries
- Need 50+ results? Run multiple targeted searches: Two 25-result searches with different angles beats one 50-result search (better quality, more control)
- Use 26-100 results sparingly: Only when you need comprehensive coverage that multiple targeted searches would miss
Token Optimization
Apply these strategies:
- Use toon format:
--output-format toonfor 40% fewer tokens than JSON (use when reading output directly) - Use text format:
--output-format textto get raw context without JSON wrapper (ideal for piping to other commands) - Use JSON + jq: Extract only the context field with jq when processing programmatically
- Set token limits: Use
--tokens-num Nto control response size
IMPORTANT: Choose one approach, don't mix them:
- Approach 1: text format - Raw context output for direct use (no JSON wrapper)
- Approach 2: toon format - Compact YAML-like output for direct reading
- Approach 3: JSON + jq - Extract context field programmatically
Examples:
# ❌ High token usage - full JSON wrapper
exa-ai context "React hooks"
# ✅ Approach 1: text format for direct use (removes JSON overhead)
exa-ai context "React hooks" --output-format text
# ✅ Approach 2: toon format for reading (40% reduction)
exa-ai context "React hooks" --output-format toon
# ✅ Approach 3: JSON + jq to extract context only
exa-ai context "React hooks" | jq -r '.context'
Quick Start
Basic Context Retrieval
exa-ai context "React hooks useState useEffect" --output-format toon
Specific Token Limit
exa-ai context "Python async/await patterns" --tokens-num 5000
Authentication Patterns
exa-ai context "JWT authentication with Ruby on Rails" \
--tokens-num 3000 \
--output-format text
Extract Context for Direct Use
exa-ai context "GraphQL schema design best practices" \
--tokens-num 4000 | jq -r '.context'
Detailed Reference
For complete options, examples, and advanced usage, consult REFERENCE.md.
Shared Requirements
Schema Design
MUST: Use object wrapper for schemas
Applies to: answer, search, find-similar, get-contents
When using schema parameters (--output-schema or --summary-schema), always wrap properties in an object:
{"type":"object","properties":{"field_name":{"type":"string"}}}
DO NOT use bare properties without the object wrapper:
{"properties":{"field_name":{"type":"string"}}} // ❌ Missing "type":"object"
Why: The Exa API requires a valid JSON Schema with an object type at the root level. Omitting this causes validation errors.
Examples:
# ✅ CORRECT - object wrapper included
exa-ai search "AI news" \
--summary-schema '{"type":"object","properties":{"headline":{"type":"string"}}}'
# ❌ WRONG - missing object wrapper
exa-ai search "AI news" \
--summary-schema '{"properties":{"headline":{"type":"string"}}}'
Output Format Selection
MUST NOT: Mix toon format with jq
Applies to: answer, context, search, find-similar, get-contents
toon format produces YAML-like output, not JSON. DO NOT pipe toon output to jq for parsing:
# ❌ WRONG - toon is not JSON
exa-ai search "query" --output-format toon | jq -r '.results'
# ✅ CORRECT - use JSON (default) with jq
exa-ai search "query" | jq -r '.results[].title'
# ✅ CORRECT - use toon for direct reading only
exa-ai search "query" --output-format toon
Why: jq expects valid JSON input. toon format is designed for human readability and produces YAML-like output that jq cannot parse.
SHOULD: Choose one output approach
Applies to: answer, context, search, find-similar, get-contents
Pick one strategy and stick with it throughout your workflow:
Approach 1: toon only - Compact YAML-like output for direct reading
- Use when: Reading output directly, no further processing needed
- Token savings: ~40% reduction vs JSON
- Example:
exa-ai search "query" --output-format toon
Approach 2: JSON + jq - Extract specific fields programmatically
- Use when: Need to extract specific fields or pipe to other commands
- Token savings: ~80-90% reduction (extracts only needed fields)
- Example:
exa-ai search "query" | jq -r '.results[].title'
Approach 3: Schemas + jq - Structured data extraction with validation
- Use when: Need consistent structured output across multiple queries
- Token savings: ~85% reduction + consistent schema
- Example:
exa-ai search "query" --summary-schema '{...}' | jq -r '.results[].summary | fromjson'
Why: Mixing approaches increases complexity and token usage. Choosing one approach optimizes for your use case.
Shell Command Best Practices
MUST: Run commands directly, parse separately
Applies to: monitor, search (websets), research, and all skills using complex commands
When using the Bash tool with complex shell syntax, run commands directly and parse output in separate steps:
# ❌ WRONG - nested command substitution
webset_id=$(exa-ai webset-create --search '{"query":"..."}' | jq -r '.webset_id')
# ✅ CORRECT - run directly, then parse
exa-ai webset-create --search '{"query":"..."}'
# Then in a follow-up command:
webset_id=$(cat output.json | jq -r '.webset_id')
Why: Complex nested $(...) command substitutions can fail unpredictably in shell environments. Running commands directly and parsing separately improves reliability and makes debugging easier.
MUST NOT: Use nested command substitutions
Applies to: All skills when using complex multi-step operations
Avoid nesting multiple levels of command substitution:
# ❌ WRONG - deeply nested
result=$(exa-ai search "$(cat query.txt | tr '\n' ' ')" --num-results $(cat config.json | jq -r '.count'))
# ✅ CORRECT - sequential steps
query=$(cat query.txt | tr '\n' ' ')
count=$(cat config.json | jq -r '.count')
exa-ai search "$query" --num-results $count
Why: Nested command substitutions are fragile and hard to debug when they fail. Sequential steps make each operation explicit and easier to troubleshoot.
SHOULD: Break complex commands into sequential steps
Applies to: All skills when working with multi-step workflows
For readability and reliability, break complex operations into clear sequential steps:
# ❌ Less maintainable - everything in one line
exa-ai webset-create --search '{"query":"startups","count":1}' | jq -r '.webset_id' | xargs -I {} exa-ai webset-search-create {} --query "AI" --behavior override
# ✅ More maintainable - clear steps
exa-ai webset-create --search '{"query":"startups","count":1}'
webset_id=$(jq -r '.webset_id' < output.json)
exa-ai webset-search-create $webset_id --query "AI" --behavior override
Why: Sequential steps are easier to understand, debug, and modify. Each step can be verified independently.