Claude Code Plugins

Community-maintained marketplace

Feedback

Get code context from repositories with examples and documentation. Use when you need code snippets, implementation examples, API usage patterns, or technical documentation for programming concepts, frameworks, or libraries.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name exa-context
description Get code context from repositories with examples and documentation. Use when you need code snippets, implementation examples, API usage patterns, or technical documentation for programming concepts, frameworks, or libraries.

Exa Context

Token-efficient strategies for retrieving code context using exa-ai.

Use --help to see available commands and verify usage before running:

exa-ai <command> --help

Critical Requirements

MUST follow these rules when using exa-ai context:

Shared Requirements

This skill inherits requirements from Common Requirements:

  • Output format selection → All output operations

MUST Rules

  1. Use dynamic tokens: Default --tokens-num dynamic adapts to content; specify exact number only when needed

SHOULD Rules

  1. Prefer text format: Use --output-format text for direct use in prompts or documentation (removes JSON wrapper overhead)

Cost Optimization

Pricing

  • 1-25 results: $0.005 per search
  • 26-100 results: $0.025 per search (5x more expensive)

Cost strategy:

  1. Default to 1-25 results: 5x cheaper, sufficient for most queries
  2. Need 50+ results? Run multiple targeted searches: Two 25-result searches with different angles beats one 50-result search (better quality, more control)
  3. Use 26-100 results sparingly: Only when you need comprehensive coverage that multiple targeted searches would miss

Token Optimization

Apply these strategies:

  • Use toon format: --output-format toon for 40% fewer tokens than JSON (use when reading output directly)
  • Use text format: --output-format text to get raw context without JSON wrapper (ideal for piping to other commands)
  • Use JSON + jq: Extract only the context field with jq when processing programmatically
  • Set token limits: Use --tokens-num N to control response size

IMPORTANT: Choose one approach, don't mix them:

  • Approach 1: text format - Raw context output for direct use (no JSON wrapper)
  • Approach 2: toon format - Compact YAML-like output for direct reading
  • Approach 3: JSON + jq - Extract context field programmatically

Examples:

# ❌ High token usage - full JSON wrapper
exa-ai context "React hooks"

# ✅ Approach 1: text format for direct use (removes JSON overhead)
exa-ai context "React hooks" --output-format text

# ✅ Approach 2: toon format for reading (40% reduction)
exa-ai context "React hooks" --output-format toon

# ✅ Approach 3: JSON + jq to extract context only
exa-ai context "React hooks" | jq -r '.context'

Quick Start

Basic Context Retrieval

exa-ai context "React hooks useState useEffect" --output-format toon

Specific Token Limit

exa-ai context "Python async/await patterns" --tokens-num 5000

Authentication Patterns

exa-ai context "JWT authentication with Ruby on Rails" \
  --tokens-num 3000 \
  --output-format text

Extract Context for Direct Use

exa-ai context "GraphQL schema design best practices" \
  --tokens-num 4000 | jq -r '.context'

Detailed Reference

For complete options, examples, and advanced usage, consult REFERENCE.md.

Shared Requirements

Schema Design

MUST: Use object wrapper for schemas

Applies to: answer, search, find-similar, get-contents

When using schema parameters (--output-schema or --summary-schema), always wrap properties in an object:

{"type":"object","properties":{"field_name":{"type":"string"}}}

DO NOT use bare properties without the object wrapper:

{"properties":{"field_name":{"type":"string"}}}  // ❌ Missing "type":"object"

Why: The Exa API requires a valid JSON Schema with an object type at the root level. Omitting this causes validation errors.

Examples:

# ✅ CORRECT - object wrapper included
exa-ai search "AI news" \
  --summary-schema '{"type":"object","properties":{"headline":{"type":"string"}}}'

# ❌ WRONG - missing object wrapper
exa-ai search "AI news" \
  --summary-schema '{"properties":{"headline":{"type":"string"}}}'

Output Format Selection

MUST NOT: Mix toon format with jq

Applies to: answer, context, search, find-similar, get-contents

toon format produces YAML-like output, not JSON. DO NOT pipe toon output to jq for parsing:

# ❌ WRONG - toon is not JSON
exa-ai search "query" --output-format toon | jq -r '.results'

# ✅ CORRECT - use JSON (default) with jq
exa-ai search "query" | jq -r '.results[].title'

# ✅ CORRECT - use toon for direct reading only
exa-ai search "query" --output-format toon

Why: jq expects valid JSON input. toon format is designed for human readability and produces YAML-like output that jq cannot parse.

SHOULD: Choose one output approach

Applies to: answer, context, search, find-similar, get-contents

Pick one strategy and stick with it throughout your workflow:

  1. Approach 1: toon only - Compact YAML-like output for direct reading

    • Use when: Reading output directly, no further processing needed
    • Token savings: ~40% reduction vs JSON
    • Example: exa-ai search "query" --output-format toon
  2. Approach 2: JSON + jq - Extract specific fields programmatically

    • Use when: Need to extract specific fields or pipe to other commands
    • Token savings: ~80-90% reduction (extracts only needed fields)
    • Example: exa-ai search "query" | jq -r '.results[].title'
  3. Approach 3: Schemas + jq - Structured data extraction with validation

    • Use when: Need consistent structured output across multiple queries
    • Token savings: ~85% reduction + consistent schema
    • Example: exa-ai search "query" --summary-schema '{...}' | jq -r '.results[].summary | fromjson'

Why: Mixing approaches increases complexity and token usage. Choosing one approach optimizes for your use case.


Shell Command Best Practices

MUST: Run commands directly, parse separately

Applies to: monitor, search (websets), research, and all skills using complex commands

When using the Bash tool with complex shell syntax, run commands directly and parse output in separate steps:

# ❌ WRONG - nested command substitution
webset_id=$(exa-ai webset-create --search '{"query":"..."}' | jq -r '.webset_id')

# ✅ CORRECT - run directly, then parse
exa-ai webset-create --search '{"query":"..."}'
# Then in a follow-up command:
webset_id=$(cat output.json | jq -r '.webset_id')

Why: Complex nested $(...) command substitutions can fail unpredictably in shell environments. Running commands directly and parsing separately improves reliability and makes debugging easier.

MUST NOT: Use nested command substitutions

Applies to: All skills when using complex multi-step operations

Avoid nesting multiple levels of command substitution:

# ❌ WRONG - deeply nested
result=$(exa-ai search "$(cat query.txt | tr '\n' ' ')" --num-results $(cat config.json | jq -r '.count'))

# ✅ CORRECT - sequential steps
query=$(cat query.txt | tr '\n' ' ')
count=$(cat config.json | jq -r '.count')
exa-ai search "$query" --num-results $count

Why: Nested command substitutions are fragile and hard to debug when they fail. Sequential steps make each operation explicit and easier to troubleshoot.

SHOULD: Break complex commands into sequential steps

Applies to: All skills when working with multi-step workflows

For readability and reliability, break complex operations into clear sequential steps:

# ❌ Less maintainable - everything in one line
exa-ai webset-create --search '{"query":"startups","count":1}' | jq -r '.webset_id' | xargs -I {} exa-ai webset-search-create {} --query "AI" --behavior override

# ✅ More maintainable - clear steps
exa-ai webset-create --search '{"query":"startups","count":1}'
webset_id=$(jq -r '.webset_id' < output.json)
exa-ai webset-search-create $webset_id --query "AI" --behavior override

Why: Sequential steps are easier to understand, debug, and modify. Each step can be verified independently.