Claude Code Plugins

Community-maintained marketplace

Feedback

exa-websets-monitor

@benjaminjackson/exa-skills
2
0

Use when setting up monitors - periodic searches to add new items or refresh existing items in a webset automatically.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name exa-websets-monitor
description Use when setting up monitors - periodic searches to add new items or refresh existing items in a webset automatically.

Exa Websets Monitor

Automate webset updates on a schedule using monitors.

Use --help to see available commands and verify usage before running:

exa-ai <command> --help

Working with Complex Shell Commands

When using the Bash tool with complex shell syntax, follow these best practices for reliability:

  1. Run commands directly: Capture JSON output directly rather than nesting command substitutions
  2. Parse in subsequent steps: Use jq to parse output in a follow-up command if needed
  3. Avoid nested substitutions: Complex nested $(...) can be fragile; break into sequential steps

Example:

# Less reliable: nested command substitution
monitor_id=$(exa-ai monitor-create ws_abc123 --cron "0 9 * * *" --behavior-type search | jq -r '.monitor_id')

# More reliable: run directly, then parse
exa-ai monitor-create ws_abc123 --cron "0 9 * * *" --behavior-type search
# Then in a follow-up command if needed:
monitor_id=$(cat output.json | jq -r '.monitor_id')

Critical Requirements

MUST follow these rules when using monitors:

  1. Use separate monitors for search and refresh: Create one monitor for adding new items and another for refreshing existing ones
  2. Schedule refreshes during off-peak hours: Run refresh monitors at night to avoid rate limits
  3. Set appropriate timezones: Use your local timezone for business-hour schedules

Monitor Behavior Types

  • search: Run search periodically to add/update items
  • refresh: Refresh existing items periodically

Output Formats

All exa-ai monitor commands support output formats:

  • JSON (default): Pipe to jq to extract specific fields (e.g., | jq -r '.monitor_id')
  • toon: Compact, readable format for direct viewing
  • pretty: Human-friendly formatted output
  • text: Plain text output

Quick Start

Create Search Monitor

# Daily search for new items
exa-ai monitor-create ws_abc123 \
  --cron "0 9 * * *" \
  --timezone "America/New_York" \
  --behavior-type search \
  --query "new AI startups" \
  --count 5

Create Refresh Monitor

# Nightly refresh of existing items
exa-ai monitor-create ws_abc123 \
  --cron "0 2 * * *" \
  --timezone "America/New_York" \
  --behavior-type refresh

Common Cron Patterns

"0 0 * * *"       # Daily at midnight
"0 9 * * 1"       # Weekly on Monday at 9 AM
"0 */6 * * *"     # Every 6 hours
"0 0 1 * *"       # Monthly on the 1st at midnight
"0 12 * * 1-5"    # Weekdays at noon

Manage Monitors

# List all monitors
exa-ai monitor-list

# Get monitor details
exa-ai monitor-get mon_xyz789

# View execution history
exa-ai monitor-runs-list mon_xyz789

Example Workflow

# 1. Create webset
webset_id=$(exa-ai webset-create \
  --search '{"query":"AI startups","count":50}' | jq -r '.webset_id')

# 2. Set up daily search monitor
monitor_id=$(exa-ai monitor-create $webset_id \
  --cron "0 9 * * *" \
  --timezone "America/New_York" \
  --behavior-type search \
  --query "new AI startups" \
  --behavior-mode append \
  --count 10 | jq -r '.monitor_id')

# 3. Set up nightly refresh
exa-ai monitor-create $webset_id \
  --cron "0 2 * * *" \
  --timezone "America/New_York" \
  --behavior-type refresh

# 4. Check execution history
exa-ai monitor-runs-list $monitor_id

Best Practices

  1. Use separate monitors for search and refresh: Create one monitor for adding new items and another for refreshing existing ones
  2. Schedule refreshes during off-peak hours: Run refresh monitors at night to avoid rate limits
  3. Use append mode for continuous growth: Only use override when you want to completely replace the collection
  4. Set appropriate timezones: Use your local timezone for business-hour schedules
  5. Monitor execution history: Check runs regularly to ensure monitors are working as expected
  6. Start with conservative schedules: Begin with daily or weekly runs, then increase frequency if needed

Detailed Reference

For complete options, examples, and cron patterns, consult REFERENCE.md.

Shared Requirements

Schema Design

MUST: Use object wrapper for schemas

Applies to: answer, search, find-similar, get-contents

When using schema parameters (--output-schema or --summary-schema), always wrap properties in an object:

{"type":"object","properties":{"field_name":{"type":"string"}}}

DO NOT use bare properties without the object wrapper:

{"properties":{"field_name":{"type":"string"}}}  // ❌ Missing "type":"object"

Why: The Exa API requires a valid JSON Schema with an object type at the root level. Omitting this causes validation errors.

Examples:

# ✅ CORRECT - object wrapper included
exa-ai search "AI news" \
  --summary-schema '{"type":"object","properties":{"headline":{"type":"string"}}}'

# ❌ WRONG - missing object wrapper
exa-ai search "AI news" \
  --summary-schema '{"properties":{"headline":{"type":"string"}}}'

Output Format Selection

MUST NOT: Mix toon format with jq

Applies to: answer, context, search, find-similar, get-contents

toon format produces YAML-like output, not JSON. DO NOT pipe toon output to jq for parsing:

# ❌ WRONG - toon is not JSON
exa-ai search "query" --output-format toon | jq -r '.results'

# ✅ CORRECT - use JSON (default) with jq
exa-ai search "query" | jq -r '.results[].title'

# ✅ CORRECT - use toon for direct reading only
exa-ai search "query" --output-format toon

Why: jq expects valid JSON input. toon format is designed for human readability and produces YAML-like output that jq cannot parse.

SHOULD: Choose one output approach

Applies to: answer, context, search, find-similar, get-contents

Pick one strategy and stick with it throughout your workflow:

  1. Approach 1: toon only - Compact YAML-like output for direct reading

    • Use when: Reading output directly, no further processing needed
    • Token savings: ~40% reduction vs JSON
    • Example: exa-ai search "query" --output-format toon
  2. Approach 2: JSON + jq - Extract specific fields programmatically

    • Use when: Need to extract specific fields or pipe to other commands
    • Token savings: ~80-90% reduction (extracts only needed fields)
    • Example: exa-ai search "query" | jq -r '.results[].title'
  3. Approach 3: Schemas + jq - Structured data extraction with validation

    • Use when: Need consistent structured output across multiple queries
    • Token savings: ~85% reduction + consistent schema
    • Example: exa-ai search "query" --summary-schema '{...}' | jq -r '.results[].summary | fromjson'

Why: Mixing approaches increases complexity and token usage. Choosing one approach optimizes for your use case.


Shell Command Best Practices

MUST: Run commands directly, parse separately

Applies to: monitor, search (websets), research, and all skills using complex commands

When using the Bash tool with complex shell syntax, run commands directly and parse output in separate steps:

# ❌ WRONG - nested command substitution
webset_id=$(exa-ai webset-create --search '{"query":"..."}' | jq -r '.webset_id')

# ✅ CORRECT - run directly, then parse
exa-ai webset-create --search '{"query":"..."}'
# Then in a follow-up command:
webset_id=$(cat output.json | jq -r '.webset_id')

Why: Complex nested $(...) command substitutions can fail unpredictably in shell environments. Running commands directly and parsing separately improves reliability and makes debugging easier.

MUST NOT: Use nested command substitutions

Applies to: All skills when using complex multi-step operations

Avoid nesting multiple levels of command substitution:

# ❌ WRONG - deeply nested
result=$(exa-ai search "$(cat query.txt | tr '\n' ' ')" --num-results $(cat config.json | jq -r '.count'))

# ✅ CORRECT - sequential steps
query=$(cat query.txt | tr '\n' ' ')
count=$(cat config.json | jq -r '.count')
exa-ai search "$query" --num-results $count

Why: Nested command substitutions are fragile and hard to debug when they fail. Sequential steps make each operation explicit and easier to troubleshoot.

SHOULD: Break complex commands into sequential steps

Applies to: All skills when working with multi-step workflows

For readability and reliability, break complex operations into clear sequential steps:

# ❌ Less maintainable - everything in one line
exa-ai webset-create --search '{"query":"startups","count":1}' | jq -r '.webset_id' | xargs -I {} exa-ai webset-search-create {} --query "AI" --behavior override

# ✅ More maintainable - clear steps
exa-ai webset-create --search '{"query":"startups","count":1}'
webset_id=$(jq -r '.webset_id' < output.json)
exa-ai webset-search-create $webset_id --query "AI" --behavior override

Why: Sequential steps are easier to understand, debug, and modify. Each step can be verified independently.