| name | exa-websets-monitor |
| description | Use when setting up monitors - periodic searches to add new items or refresh existing items in a webset automatically. |
Exa Websets Monitor
Automate webset updates on a schedule using monitors.
Use --help to see available commands and verify usage before running:
exa-ai <command> --help
Working with Complex Shell Commands
When using the Bash tool with complex shell syntax, follow these best practices for reliability:
- Run commands directly: Capture JSON output directly rather than nesting command substitutions
- Parse in subsequent steps: Use
jqto parse output in a follow-up command if needed - Avoid nested substitutions: Complex nested
$(...)can be fragile; break into sequential steps
Example:
# Less reliable: nested command substitution
monitor_id=$(exa-ai monitor-create ws_abc123 --cron "0 9 * * *" --behavior-type search | jq -r '.monitor_id')
# More reliable: run directly, then parse
exa-ai monitor-create ws_abc123 --cron "0 9 * * *" --behavior-type search
# Then in a follow-up command if needed:
monitor_id=$(cat output.json | jq -r '.monitor_id')
Critical Requirements
MUST follow these rules when using monitors:
- Use separate monitors for search and refresh: Create one monitor for adding new items and another for refreshing existing ones
- Schedule refreshes during off-peak hours: Run refresh monitors at night to avoid rate limits
- Set appropriate timezones: Use your local timezone for business-hour schedules
Monitor Behavior Types
- search: Run search periodically to add/update items
- refresh: Refresh existing items periodically
Output Formats
All exa-ai monitor commands support output formats:
- JSON (default): Pipe to
jqto extract specific fields (e.g.,| jq -r '.monitor_id') - toon: Compact, readable format for direct viewing
- pretty: Human-friendly formatted output
- text: Plain text output
Quick Start
Create Search Monitor
# Daily search for new items
exa-ai monitor-create ws_abc123 \
--cron "0 9 * * *" \
--timezone "America/New_York" \
--behavior-type search \
--query "new AI startups" \
--count 5
Create Refresh Monitor
# Nightly refresh of existing items
exa-ai monitor-create ws_abc123 \
--cron "0 2 * * *" \
--timezone "America/New_York" \
--behavior-type refresh
Common Cron Patterns
"0 0 * * *" # Daily at midnight
"0 9 * * 1" # Weekly on Monday at 9 AM
"0 */6 * * *" # Every 6 hours
"0 0 1 * *" # Monthly on the 1st at midnight
"0 12 * * 1-5" # Weekdays at noon
Manage Monitors
# List all monitors
exa-ai monitor-list
# Get monitor details
exa-ai monitor-get mon_xyz789
# View execution history
exa-ai monitor-runs-list mon_xyz789
Example Workflow
# 1. Create webset
webset_id=$(exa-ai webset-create \
--search '{"query":"AI startups","count":50}' | jq -r '.webset_id')
# 2. Set up daily search monitor
monitor_id=$(exa-ai monitor-create $webset_id \
--cron "0 9 * * *" \
--timezone "America/New_York" \
--behavior-type search \
--query "new AI startups" \
--behavior-mode append \
--count 10 | jq -r '.monitor_id')
# 3. Set up nightly refresh
exa-ai monitor-create $webset_id \
--cron "0 2 * * *" \
--timezone "America/New_York" \
--behavior-type refresh
# 4. Check execution history
exa-ai monitor-runs-list $monitor_id
Best Practices
- Use separate monitors for search and refresh: Create one monitor for adding new items and another for refreshing existing ones
- Schedule refreshes during off-peak hours: Run refresh monitors at night to avoid rate limits
- Use append mode for continuous growth: Only use override when you want to completely replace the collection
- Set appropriate timezones: Use your local timezone for business-hour schedules
- Monitor execution history: Check runs regularly to ensure monitors are working as expected
- Start with conservative schedules: Begin with daily or weekly runs, then increase frequency if needed
Detailed Reference
For complete options, examples, and cron patterns, consult REFERENCE.md.
Shared Requirements
Schema Design
MUST: Use object wrapper for schemas
Applies to: answer, search, find-similar, get-contents
When using schema parameters (--output-schema or --summary-schema), always wrap properties in an object:
{"type":"object","properties":{"field_name":{"type":"string"}}}
DO NOT use bare properties without the object wrapper:
{"properties":{"field_name":{"type":"string"}}} // ❌ Missing "type":"object"
Why: The Exa API requires a valid JSON Schema with an object type at the root level. Omitting this causes validation errors.
Examples:
# ✅ CORRECT - object wrapper included
exa-ai search "AI news" \
--summary-schema '{"type":"object","properties":{"headline":{"type":"string"}}}'
# ❌ WRONG - missing object wrapper
exa-ai search "AI news" \
--summary-schema '{"properties":{"headline":{"type":"string"}}}'
Output Format Selection
MUST NOT: Mix toon format with jq
Applies to: answer, context, search, find-similar, get-contents
toon format produces YAML-like output, not JSON. DO NOT pipe toon output to jq for parsing:
# ❌ WRONG - toon is not JSON
exa-ai search "query" --output-format toon | jq -r '.results'
# ✅ CORRECT - use JSON (default) with jq
exa-ai search "query" | jq -r '.results[].title'
# ✅ CORRECT - use toon for direct reading only
exa-ai search "query" --output-format toon
Why: jq expects valid JSON input. toon format is designed for human readability and produces YAML-like output that jq cannot parse.
SHOULD: Choose one output approach
Applies to: answer, context, search, find-similar, get-contents
Pick one strategy and stick with it throughout your workflow:
Approach 1: toon only - Compact YAML-like output for direct reading
- Use when: Reading output directly, no further processing needed
- Token savings: ~40% reduction vs JSON
- Example:
exa-ai search "query" --output-format toon
Approach 2: JSON + jq - Extract specific fields programmatically
- Use when: Need to extract specific fields or pipe to other commands
- Token savings: ~80-90% reduction (extracts only needed fields)
- Example:
exa-ai search "query" | jq -r '.results[].title'
Approach 3: Schemas + jq - Structured data extraction with validation
- Use when: Need consistent structured output across multiple queries
- Token savings: ~85% reduction + consistent schema
- Example:
exa-ai search "query" --summary-schema '{...}' | jq -r '.results[].summary | fromjson'
Why: Mixing approaches increases complexity and token usage. Choosing one approach optimizes for your use case.
Shell Command Best Practices
MUST: Run commands directly, parse separately
Applies to: monitor, search (websets), research, and all skills using complex commands
When using the Bash tool with complex shell syntax, run commands directly and parse output in separate steps:
# ❌ WRONG - nested command substitution
webset_id=$(exa-ai webset-create --search '{"query":"..."}' | jq -r '.webset_id')
# ✅ CORRECT - run directly, then parse
exa-ai webset-create --search '{"query":"..."}'
# Then in a follow-up command:
webset_id=$(cat output.json | jq -r '.webset_id')
Why: Complex nested $(...) command substitutions can fail unpredictably in shell environments. Running commands directly and parsing separately improves reliability and makes debugging easier.
MUST NOT: Use nested command substitutions
Applies to: All skills when using complex multi-step operations
Avoid nesting multiple levels of command substitution:
# ❌ WRONG - deeply nested
result=$(exa-ai search "$(cat query.txt | tr '\n' ' ')" --num-results $(cat config.json | jq -r '.count'))
# ✅ CORRECT - sequential steps
query=$(cat query.txt | tr '\n' ' ')
count=$(cat config.json | jq -r '.count')
exa-ai search "$query" --num-results $count
Why: Nested command substitutions are fragile and hard to debug when they fail. Sequential steps make each operation explicit and easier to troubleshoot.
SHOULD: Break complex commands into sequential steps
Applies to: All skills when working with multi-step workflows
For readability and reliability, break complex operations into clear sequential steps:
# ❌ Less maintainable - everything in one line
exa-ai webset-create --search '{"query":"startups","count":1}' | jq -r '.webset_id' | xargs -I {} exa-ai webset-search-create {} --query "AI" --behavior override
# ✅ More maintainable - clear steps
exa-ai webset-create --search '{"query":"startups","count":1}'
webset_id=$(jq -r '.webset_id' < output.json)
exa-ai webset-search-create $webset_id --query "AI" --behavior override
Why: Sequential steps are easier to understand, debug, and modify. Each step can be verified independently.