Claude Code Plugins

Community-maintained marketplace

Feedback

processing-data

@binome-dev/humcp
1
0

Processes CSV files and pandas DataFrames. Use when working with CSV files, tabular data, spreadsheets, or when the user asks to query, analyze, or manipulate structured data.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name processing-data
description Processes CSV files and pandas DataFrames. Use when working with CSV files, tabular data, spreadsheets, or when the user asks to query, analyze, or manipulate structured data.

Data Processing Tools

Tools for working with CSV files and pandas DataFrames.

CSV Operations

List available CSV files

result = await list_csv_files()
# Returns: {"success": True, "data": ["file1", "file2"], "count": 2}

Read CSV content

result = await read_csv_file("mydata", row_limit=100)
# Returns rows as list of dicts

Query with SQL (DuckDB)

result = await query_csv_file("mydata", "SELECT * FROM mydata WHERE value > 10")

Security: Only SELECT queries allowed. INSERT, UPDATE, DELETE rejected.

Add/remove CSV files

await add_csv_file("/path/to/file.csv")
await remove_csv_file("filename")

Pandas Operations

Create DataFrame

# From CSV
result = await create_pandas_dataframe(
    dataframe_name="sales",
    create_using_function="read_csv",
    function_parameters={"filepath_or_buffer": "data.csv"}
)

# From dict
result = await create_pandas_dataframe(
    dataframe_name="mydf",
    create_using_function="DataFrame",
    function_parameters={"data": {"col1": [1, 2], "col2": [3, 4]}}
)

Allowed functions: DataFrame, read_csv, read_json, read_excel, read_parquet, read_feather, read_orc, read_html, read_xml, read_table, read_sql.

Run operations

# Get first rows
result = await run_dataframe_operation("sales", "head", {"n": 5})

# Filter data
result = await run_dataframe_operation("sales", "query", {"expr": "amount > 100"})

# Get statistics
result = await run_dataframe_operation("sales", "describe", {})

Allowed operations: head, tail, describe, query, filter, groupby, sort_values, mean, sum, count, and 100+ more safe operations.

Export DataFrame

result = await export_dataframe(
    dataframe_name="sales",
    export_function="to_csv",
    export_parameters={"path_or_buf": "output.csv", "index": False}
)

Manage DataFrames

await list_dataframes()           # List all in memory
await get_dataframe_info("sales") # Get details
await delete_dataframe("sales")   # Remove from memory

Security Notes

  • CSV queries: Only SELECT statements allowed
  • Pandas: Operations restricted to allowlist of safe methods
  • No arbitrary code execution via getattr