| name | netcdf-metadata |
| description | Extract and analyze metadata from NetCDF files. Use this skill when working with NetCDF (.nc) or CDL (.cdl) files to extract variable information, dimensions, attributes, and data types to CSV format for documentation and analysis. |
NetCDF Metadata Extraction
Overview
This skill provides tools for extracting metadata from NetCDF files into structured CSV format. Extract variable names, dimensions, shapes, data types, units, and all NetCDF attributes for documentation, analysis, and understanding NetCDF file contents.
When to Use This Skill
Use this skill when:
- Working with NetCDF (.nc) or CDL (.cdl) files
- Needing to document NetCDF file contents
- Extracting variable lists and attributes to CSV
- Understanding NetCDF file structure before analysis
- Creating metadata catalogs for NetCDF datasets
- Comparing variables across multiple NetCDF files
NetCDF File Formats
Binary NetCDF (.nc files)
Binary format that xarray can read directly. Comes in two versions:
- NetCDF3 (classic): Use
engine='scipy'with xarray - NetCDF4/HDF5: Use
engine='h5netcdf'with xarray
CDL Format (.nc.cdl files)
Text representation of NetCDF files. Must be converted to binary using ncgen:
ncgen -o output.nc input.nc.cdl
Required Dependencies
Ensure the project has these dependencies installed:
xarray- NetCDF file readingscipy- Backend for NetCDF3 classic formath5netcdf(optional) - Backend for NetCDF4/HDF5 format
Install with:
uv add xarray scipy h5netcdf
Metadata Extraction
Using the Extraction Script
The skill includes scripts/extract_netcdf_metadata.py which extracts all variable metadata to CSV.
Usage:
# Process all .nc files in a directory
uv run python scripts/extract_netcdf_metadata.py
# Process specific files
uv run python scripts/extract_netcdf_metadata.py file1.nc file2.nc
Output: Creates .metadata.csv files alongside each .nc file with the same basename.
CSV Contents:
variable_name- NetCDF variable identifierdimensions- Dimension names (comma-separated)shape- Array shape as tupledtype- Data type (float32, int8, etc.)ndim- Number of dimensionssize- Total number of elementslong_name- Human-readable description (if present)units- Measurement units (if present)- Additional columns for any other NetCDF attributes (flags, FillValue, etc.)
Manual Extraction with xarray
For custom metadata extraction or analysis:
import xarray as xr
# Open NetCDF file (use engine='scipy' for NetCDF3)
ds = xr.open_dataset('file.nc', engine='scipy')
# Access metadata
print(ds) # Overview of entire dataset
print(ds.dims) # Dimensions
print(ds.data_vars) # Data variables
# Access specific variable
var = ds['variable_name']
print(var.dims) # Variable dimensions
print(var.shape) # Variable shape
print(var.dtype) # Data type
print(var.attrs) # All attributes
# Access specific attributes
if 'long_name' in var.attrs:
print(var.attrs['long_name'])
if 'units' in var.attrs:
print(var.attrs['units'])
ds.close()
Converting CDL to Binary NetCDF
When working with .nc.cdl files, convert them first:
import subprocess
from pathlib import Path
cdl_file = Path("input.nc.cdl")
nc_file = cdl_file.with_suffix("").with_suffix(".nc")
subprocess.run(
["ncgen", "-o", str(nc_file), str(cdl_file)],
check=True
)
Then read with xarray as normal.
Common Patterns
Document a Single NetCDF File
# Convert if CDL
ncgen -o data.nc data.nc.cdl
# Extract metadata
uv run python scripts/extract_netcdf_metadata.py data.nc
Result: data.metadata.csv created in the same directory.
Batch Process Multiple Files
# Convert all CDL files in directory
for f in *.nc.cdl; do
ncgen -o "${f%.cdl}" "$f"
done
# Extract metadata from all
uv run python scripts/extract_netcdf_metadata.py *.nc
Compare Variables Across Files
Extract metadata from multiple files, then compare the CSV files to identify:
- Common variables across datasets
- Different variable names for the same concept
- Missing variables in specific files
- Attribute differences between datasets
Troubleshooting
"file signature not found" error
The NetCDF file is in classic format but xarray is using the wrong backend.
Fix: Use engine='scipy':
ds = xr.open_dataset(file, engine='scipy')
"ncgen not found" error
The ncgen tool is not installed.
Fix: Install NetCDF tools:
# macOS
brew install netcdf
# Ubuntu/Debian
apt install netcdf-bin
Missing backend libraries
xarray requires a backend to read NetCDF files.
Fix: Install scipy for NetCDF3:
uv add scipy
Or h5netcdf for NetCDF4:
uv add h5netcdf
Script Reference
scripts/extract_netcdf_metadata.py
Command-line tool that extracts variable metadata from NetCDF files to CSV format. Run directly without reading into context. The script:
- Accepts one or more NetCDF files as arguments
- Extracts all variable metadata (name, dimensions, shape, dtype, attributes)
- Writes CSV files with
.metadata.csvextension alongside the original files - Handles both NetCDF3 (classic) and NetCDF4 formats automatically
- Organizes CSV columns with standard fields first (variable_name, dimensions, shape, dtype, ndim, size, long_name, units)