Claude Code Plugins

Community-maintained marketplace

Feedback

Query BSL semantic models with group_by, aggregate, filter, and visualizations. Use for data analysis from existing semantic tables.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name bsl-query-expert
description Query BSL semantic models with group_by, aggregate, filter, and visualizations. Use for data analysis from existing semantic tables.

BSL Query Expert

Query semantic models using BSL. Be concise.

Workflow

  1. list_models() → discover available models
  2. get_model(name) → get schema (REQUIRED before querying)
  3. get_documentation("query-methods")call before first query to learn syntax
  4. query_model(query) → execute, auto-displays results
  5. Brief summary (1-2 sentences max)

Behavior

  • Execute queries immediately - don't show code to user
  • Never stop after listing models - proceed to query
  • Charts/tables auto-display - don't print data inline
  • Reuse context: Don't re-call tools if info already in context
  • IMPORTANT: If query fails → call get_documentation("query-methods") to learn correct syntax before retrying

CRITICAL: Field Names

  • Use EXACT names from get_model() output
  • Joined columns: t.customers.country (not t.customer_id.country())
  • Direct columns: t.region (not t.model.region)
  • NEVER invent methods on columns - they don't exist!

CRITICAL: Never Guess Filter Values

  • WRONG: .filter(lambda t: t.region.isin(["US", "EU"])) without checking actual values first
  • Data uses codes/IDs that differ from what you expect (e.g., "California" might be "CA" or "US-CA")
  • Always discover values first, then filter with real data

Multi-Hop Query Pattern

When filtering by names/locations/categories you haven't seen:

Step 1 (discover): query_model(query="model.group_by('region').aggregate('count')", records_limit=50, get_chart=false)
Step 2 (filter):   query_model(query="model.filter(lambda t: t.region.isin(['CA','NY'])).group_by('region').aggregate('count')", get_records=false)
  • Step 1: Get data to LLM (records_limit=50), hide chart (get_chart=false)
  • Step 2: Display to user (get_records=false), show chart (default)

query_model Parameters

  • get_records=true (default): Return data to LLM, table auto-displays
  • get_records=false: Display-only, no data returned to LLM
  • records_limit=N: Max records to LLM (increase for discovery queries)
  • get_chart=true (default): Show chart; false for table-only

CRITICAL: Exploration vs Final Query

  • Discovery/exploration queries: Use get_chart=false - no chart when exploring data values
  • Final answer query: Use get_chart=true (default) - show chart for user's answer
  • Example: Looking up airport codes? → get_chart=false. Final flight count? → chart enabled

Charts

  • Default: Omit chart_spec - auto-detect handles most cases
  • Override only if needed: chart_spec={"chart_type": "line"} or "bar"
  • CRITICAL: Charting only works on BSL SemanticQuery results (after group_by + aggregate)
  • If you use filter-only queries (returns Ibis Table), set get_chart=false - charts will fail on raw tables

Time Dimensions

  • Use .truncate() for time columns: with_dimensions(year=lambda t: t.date.truncate("Y"))
  • Units: "Y", "Q", "M", "W", "D", "h", "m", "s"

CRITICAL: Case Expressions

  • Use ibis.cases() (PLURAL) - NOT ibis.case()
  • Syntax: ibis.cases((condition1, value1), (condition2, value2), else_=default)
  • Example: ibis.cases((t.value > 100, "high"), (t.value > 50, "medium"), else_="low")

Help

get_documentation(topic) for:

  • Core: getting-started, semantic-table, yaml-config, profile, compose, query-methods
  • Advanced: windowing, bucketing, nested-subtotals, percentage-total, indexing, sessionized, comparison
  • Charts: charting, charting-altair, charting-plotly, charting-plotext

Additional Information

Available documentation:

Query Syntax Reference

Execute BSL queries and visualize results. Returns query results with optional charts.

Core Pattern

model.group_by(<dimensions>).aggregate(<measures>)  # Both take STRING names only

CRITICAL: aggregate() takes measure names as strings, NOT expressions or lambdas!

Method Order

model -> with_dimensions -> filter -> with_measures -> group_by -> aggregate -> order_by -> mutate -> limit

Lambda Column Access

CRITICAL: In with_dimensions and with_measures lambdas, access columns directly - NO model prefix!

# ✅ CORRECT - access columns directly via t
flights.with_dimensions(x=lambda t: ibis.cases((t.carrier == "WN", "Southwest"), else_="Other"))
flights.with_measures(pct=lambda t: t.flight_count / t.all(t.flight_count) * 100)

# ❌ WRONG - model prefix fails in with_dimensions/with_measures
flights.with_dimensions(x=lambda t: t.flights.carrier)  # ERROR: 'Table' has no attribute 'flights'
flights.with_measures(x=lambda t: t.flights.flight_count)  # ERROR!

Note: Model prefix (e.g., t.flights.carrier) works in .filter() but NOT in with_dimensions/with_measures.

Filtering

# Simple filter
model.filter(lambda t: t.status == "active").group_by("category").aggregate("count")

# Multiple conditions - use ibis.and_() / ibis.or_()
model.filter(lambda t: ibis.and_(t.amount > 1000, t.year >= 2023))

# IN operator - MUST use .isin() (Python "in" does NOT work!)
model.filter(lambda t: t.region.isin(["US", "EU"]))  # ✅
model.filter(lambda t: t.region in ["US", "EU"])    # ❌ ERROR!

# Post-aggregate filter (SQL HAVING) - filter AFTER aggregate
model.group_by("carrier").aggregate("count").filter(lambda t: t.count > 1000)

Joined Columns

Models with joins expose prefixed columns (e.g., customers.country). Use EXACT names from get_model():

# ✅ CORRECT - use prefixed column name
model.filter(lambda t: t.customers.country.isin(["US", "CA"])).group_by("customers.country").aggregate("count")

# ❌ WRONG - columns don't have lookup methods!
model.filter(lambda t: t.customer_id.country())  # ERROR: no 'country' attribute

Key: Look for prefixed columns in get_model() output - don't call methods on ID columns.

Time Transformations

group_by() only accepts strings. Use .with_dimensions() first:

model.with_dimensions(year=lambda t: t.created_at.truncate("Y")).group_by("year").aggregate("count")

Truncate units: "Y", "Q", "M", "W", "D", "h", "m", "s"

Filtering Timestamps - Match Types!

# .year() returns int -> compare with int
model.filter(lambda t: t.created_at.year() >= 2023)

# .truncate() returns timestamp -> compare with ISO string
model.with_dimensions(yr=lambda t: t.created_at.truncate("Y")).filter(lambda t: t.yr >= '2023-01-01')

Percentage of Total

Use t.all(t.measure) in .with_measures() for grand total:

# Simple percentage by category
sales.with_measures(pct=lambda t: t.revenue / t.all(t.revenue) * 100).group_by("category").aggregate("revenue", "pct")

# Complex: filter + joined column + time dimension + percentage
orders.filter(lambda t: t.customers.country.isin(["US", "CA"])).with_dimensions(
    order_date=lambda t: t.created_at.date()
).with_measures(
    pct=lambda t: t.order_count / t.all(t.order_count) * 100
).group_by("order_date").aggregate("order_count", "pct").order_by("order_date")

More: get_documentation(topic="percentage-total")

Sorting & Limiting

model.group_by("category").aggregate("revenue").order_by(ibis.desc("revenue")).limit(10)

CRITICAL: .limit() in query limits data before calculations. Use limit parameter for display-only limiting.

Window Functions

.mutate() for post-aggregation transforms - MUST come after .order_by():

model.group_by("week").aggregate("count").order_by("week").mutate(
    rolling_avg=lambda t: t.count.mean().over(ibis.window(rows=(-9, 0), order_by="week"))
)

More: get_documentation(topic="windowing")

Chart

chart_spec={"chart_type": "bar"}  # or "line", "scatter" - omit for auto-detect