Claude Code Plugins

Community-maintained marketplace

Feedback

document-indexing

@boringdata/kurt-demo
0
0

Extract structured metadata from documents using AI. Classify content types, extract topics and tools. Supports async batch processing.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name document-indexing
description Extract structured metadata from documents using AI. Classify content types, extract topics and tools. Supports async batch processing.

Document Indexing

Overview

Extract structured metadata from fetched documents using LLM:

  • Content type: blog, tutorial, guide, reference, etc.
  • Topics & Tools: Main subjects and technologies
  • Structure: Code examples, procedures, narrative

Creates DocumentMetadata records for search and clustering.

Quick Start

# Index single document
kurt index 5494cc13

# Batch index (async, 5-10x faster)
kurt index --url-prefix https://example.com/

# Re-index with custom concurrency
kurt index --url-prefix https://example.com/ --force --max-concurrent 10

Prerequisites: Documents must be FETCHED (kurct content fetch)

Commands

# Single
kurt index <doc-id>
kurt index <doc-id> --force

# Batch (async parallel)
kurt index --url-prefix <url>
kurt index --url-contains <string>
kurt index --max-concurrent 10     # Default: 5

# Filters
kurt index --status FETCHED --url-prefix <url>

Content Types

BLOG | TUTORIAL | GUIDE | REFERENCE | WHITEPAPER | CASE_STUDY | FAQ | CHANGELOG | MARKETING | OTHER

Extracted Metadata

{
  "content_type": "TUTORIAL",
  "extracted_title": "Machine Learning Guide",
  "primary_topics": ["Machine Learning", "Python"],
  "tools_technologies": ["TensorFlow", "Pandas"],
  "has_code_examples": true,
  "has_step_by_step_procedures": true,
  "has_narrative_structure": false
}

Performance

  • Sequential: ~3-5s per document
  • Parallel (5 concurrent): ~1s per document avg
  • Example: 92 docs in 30s (parallel) vs 5 mins (sequential)

Python API

from kurt.indexing import extract_document_metadata, batch_extract_document_metadata
import asyncio

# Single
result = extract_document_metadata("abc-123")

# Batch
results = asyncio.run(batch_extract_document_metadata(
    ["abc-123", "def-456"],
    max_concurrent=5
))

Troubleshooting

Issue Solution
"Document not FETCHED" Run kurct content fetch <id> first
"Content file not found" Re-fetch document
Slow batch Increase --max-concurrent
Rate limits Reduce --max-concurrent

Next Steps

  • ingest-content-skill - Fetch documents first
  • document-management-skill - Query and manage documents