Claude Code Plugins

Community-maintained marketplace

Feedback

exploratory-data-analysis

@braselog/researchAssistant
1
0

Perform comprehensive exploratory data analysis on research data. Automatically analyze data structure, quality, distributions, and generate insights. Use when the user provides a dataset, asks to "explore data", "analyze this file", or needs to understand their data before formal analysis.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name exploratory-data-analysis
description Perform comprehensive exploratory data analysis on research data. Automatically analyze data structure, quality, distributions, and generate insights. Use when the user provides a dataset, asks to "explore data", "analyze this file", or needs to understand their data before formal analysis.

Exploratory Data Analysis (EDA)

Systematically explore and understand datasets before formal analysis.

When to Use

  • User provides a data file for analysis (CSV, Excel, HDF5, etc.)
  • User asks to "explore", "analyze", or "summarize" data
  • Starting the ANALYSIS phase of a research project
  • Before running formal statistical tests
  • Assessing data quality and completeness
  • Understanding data distributions and relationships
  • Identifying outliers and anomalies

EDA Workflow

1. LOAD DATA     → Read file, check structure
2. SUMMARIZE     → Basic statistics, data types
3. QUALITY       → Missing values, outliers, duplicates
4. DISTRIBUTIONS → Visualize variable distributions
5. RELATIONSHIPS → Correlations, group comparisons
6. DOCUMENT      → Generate EDA report

Step 1: Load and Inspect Data

import pandas as pd
import numpy as np

# Load data
df = pd.read_csv('data.csv')  # Adjust for your file type

# Basic inspection
print(f"Shape: {df.shape[0]} rows × {df.shape[1]} columns")
print(f"\nColumn types:\n{df.dtypes}")
print(f"\nFirst few rows:\n{df.head()}")
print(f"\nMemory usage: {df.memory_usage(deep=True).sum() / 1024**2:.2f} MB")

Step 2: Summary Statistics

# Numerical columns
print("Numerical Summary:")
print(df.describe().T[['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']])

# Categorical columns
for col in df.select_dtypes(include=['object', 'category']).columns:
    print(f"\n{col}:")
    print(df[col].value_counts().head(10))

Key Statistics to Report

Statistic Purpose
n (count) Sample size, completeness
Mean Central tendency
SD Spread/variability
Min/Max Range, potential outliers
Quartiles Distribution shape
Unique values Cardinality for categoricals

Step 3: Data Quality Assessment

Missing Values

# Missing value summary
missing = df.isnull().sum()
missing_pct = (missing / len(df) * 100).round(2)
missing_df = pd.DataFrame({
    'Missing': missing,
    'Percent': missing_pct
}).query('Missing > 0').sort_values('Percent', ascending=False)

print("Missing Values:")
print(missing_df)

# Visualize missing pattern
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(10, 6))
sns.heatmap(df.isnull(), cbar=True, yticklabels=False, cmap='viridis')
plt.title('Missing Data Pattern')
plt.tight_layout()
plt.savefig('results/eda_missing_pattern.png', dpi=150)

Outlier Detection

def detect_outliers_iqr(data, column):
    """Detect outliers using IQR method."""
    Q1 = data[column].quantile(0.25)
    Q3 = data[column].quantile(0.75)
    IQR = Q3 - Q1
    lower = Q1 - 1.5 * IQR
    upper = Q3 + 1.5 * IQR
    outliers = data[(data[column] < lower) | (data[column] > upper)]
    return outliers, lower, upper

# Check all numerical columns
for col in df.select_dtypes(include=[np.number]).columns:
    outliers, lower, upper = detect_outliers_iqr(df, col)
    if len(outliers) > 0:
        print(f"{col}: {len(outliers)} outliers ({len(outliers)/len(df)*100:.1f}%)")
        print(f"  Range: [{lower:.2f}, {upper:.2f}]")

Duplicates

# Check for duplicate rows
duplicates = df.duplicated().sum()
print(f"Duplicate rows: {duplicates} ({duplicates/len(df)*100:.1f}%)")

# Check for duplicate IDs (if applicable)
if 'id' in df.columns:
    dup_ids = df['id'].duplicated().sum()
    print(f"Duplicate IDs: {dup_ids}")

Step 4: Distribution Analysis

Numerical Variables

import matplotlib.pyplot as plt
import seaborn as sns

numerical_cols = df.select_dtypes(include=[np.number]).columns

fig, axes = plt.subplots(len(numerical_cols), 2, figsize=(12, 4*len(numerical_cols)))

for i, col in enumerate(numerical_cols):
    # Histogram
    axes[i, 0].hist(df[col].dropna(), bins=30, edgecolor='black', alpha=0.7)
    axes[i, 0].set_title(f'{col} - Distribution')
    axes[i, 0].set_xlabel(col)
    axes[i, 0].set_ylabel('Frequency')
    
    # Box plot
    axes[i, 1].boxplot(df[col].dropna())
    axes[i, 1].set_title(f'{col} - Box Plot')
    axes[i, 1].set_ylabel(col)

plt.tight_layout()
plt.savefig('results/eda_distributions.png', dpi=150)

Categorical Variables

categorical_cols = df.select_dtypes(include=['object', 'category']).columns

for col in categorical_cols:
    plt.figure(figsize=(10, 4))
    df[col].value_counts().head(15).plot(kind='bar', edgecolor='black')
    plt.title(f'{col} - Value Counts')
    plt.xlabel(col)
    plt.ylabel('Count')
    plt.xticks(rotation=45, ha='right')
    plt.tight_layout()
    plt.savefig(f'results/eda_{col}_counts.png', dpi=150)

Step 5: Relationship Analysis

Correlation Matrix

# Numerical correlations
corr_matrix = df.select_dtypes(include=[np.number]).corr()

plt.figure(figsize=(10, 8))
mask = np.triu(np.ones_like(corr_matrix, dtype=bool))
sns.heatmap(corr_matrix, mask=mask, annot=True, fmt='.2f', 
            cmap='RdBu_r', center=0, square=True)
plt.title('Correlation Matrix')
plt.tight_layout()
plt.savefig('results/eda_correlations.png', dpi=150)

# Identify strong correlations
strong_corr = []
for i in range(len(corr_matrix.columns)):
    for j in range(i+1, len(corr_matrix.columns)):
        if abs(corr_matrix.iloc[i, j]) > 0.7:
            strong_corr.append({
                'var1': corr_matrix.columns[i],
                'var2': corr_matrix.columns[j],
                'correlation': corr_matrix.iloc[i, j]
            })
if strong_corr:
    print("Strong correlations (|r| > 0.7):")
    for c in strong_corr:
        print(f"  {c['var1']} ↔ {c['var2']}: r = {c['correlation']:.3f}")

Pairwise Scatter Plots

# For key variables only (to avoid overwhelming output)
key_vars = ['var1', 'var2', 'var3']  # Adjust to your variables
sns.pairplot(df[key_vars], diag_kind='hist')
plt.savefig('results/eda_pairplot.png', dpi=150)

Group Comparisons

# If you have a grouping variable
if 'group' in df.columns:
    for col in df.select_dtypes(include=[np.number]).columns:
        plt.figure(figsize=(8, 5))
        df.boxplot(column=col, by='group')
        plt.title(f'{col} by Group')
        plt.suptitle('')  # Remove automatic title
        plt.tight_layout()
        plt.savefig(f'results/eda_{col}_by_group.png', dpi=150)

Step 6: Generate EDA Report

Report Template

# Exploratory Data Analysis Report

**Dataset**: [filename]
**Date**: [date]
**Analyst**: [name]

## 1. Data Overview

- **Rows**: X
- **Columns**: Y
- **File size**: Z MB

## 2. Variable Summary

| Variable | Type | Non-Null | Unique | Mean | SD |
|----------|------|----------|--------|------|-----|
| var1 | float64 | 100 | 50 | 25.3 | 5.2 |
| ... | ... | ... | ... | ... | ... |

## 3. Data Quality

### Missing Values
- [List variables with missing data and percentages]

### Outliers
- [List variables with outliers detected]

### Duplicates
- [Number of duplicate rows]

## 4. Key Findings

1. **Finding 1**: Description
2. **Finding 2**: Description
3. **Finding 3**: Description

## 5. Recommendations

- [ ] Handle missing values in [variable] using [method]
- [ ] Consider transformation for [variable] (skewed distribution)
- [ ] Investigate outliers in [variable]
- [ ] Check data collection for [issue noted]

## 6. Next Steps

Based on this EDA, the following analyses are recommended:
1. [Recommended analysis 1]
2. [Recommended analysis 2]

Integration with RA Workflow

ANALYSIS Phase Connection

After completing EDA:

  1. Document findings in .research/logs/activity.md
  2. Update tasks.md with identified issues to address
  3. Proceed to formal statistical analysis with /statistical_analysis
  4. Save figures to results/intermediate/ or manuscript/figures/

Files to Create

File Location Purpose
EDA report results/eda_report.md Document findings
Distribution plots results/intermediate/ Quality check
Correlation matrix results/intermediate/ Relationship overview
Missing data pattern results/intermediate/ Data quality

Quick EDA Checklist

  • Loaded data and verified structure
  • Checked data types are correct
  • Calculated summary statistics
  • Identified and documented missing values
  • Detected outliers
  • Checked for duplicates
  • Visualized distributions
  • Examined correlations/relationships
  • Documented key findings
  • Listed recommended next steps