Claude Code Plugins

Community-maintained marketplace

Feedback

angular-development-patterns

@cartman61616/jd-claude-things
0
0

Master modern angular development with standalone components and signals patterns, best practices, and modern techniques

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name angular-development-patterns
description Master modern angular development with standalone components and signals patterns, best practices, and modern techniques

Angular Development Patterns

Comprehensive guide to modern angular development with standalone components and signals using modern best practices.

When to Use This Skill

  • Building modern angular development with standalone components and signals applications
  • Implementing production-ready solutions
  • Optimizing performance and scalability
  • Following industry best practices
  • Creating maintainable, testable code

Core Concepts

1. Fundamental Principles

Modern Angular development with standalone components and signals is built on several key principles:

  • Clarity: Code should be easy to understand
  • Maintainability: Design for long-term maintenance
  • Testability: Write code that's easy to test
  • Performance: Consider efficiency from the start
  • Security: Build security in from the beginning

2. Architecture Patterns

Common architectural patterns include:

  • Modular design
  • Separation of concerns
  • Dependency injection
  • Configuration management
  • Error handling strategies

3. Development Workflow

Standard workflow for modern angular development with standalone components and signals:

  1. Requirements analysis
  2. Design and planning
  3. Implementation
  4. Testing
  5. Documentation
  6. Deployment
  7. Monitoring and maintenance

Quick Start

Here's a minimal example to get started:

# Quick start example
def main():
    print("Getting started with modern angular development with standalone components and signals")

if __name__ == "__main__":
    main()

Fundamental Patterns

1. Pattern: Basic Structure

Use Case: Starting point for most projects

class BasicExample:
    def __init__(self, config: dict = None):
        self.config = config or {}

    def process(self, data):
        # Process data
        return data

2. Pattern: Error Handling

Use Case: Robust error management

from typing import Optional

class Result:
    def __init__(self, value=None, error: Optional[str] = None):
        self.value = value
        self.error = error

    @property
    def is_success(self) -> bool:
        return self.error is None

def safe_operation(data) -> Result:
    try:
        result = process_data(data)
        return Result(value=result)
    except Exception as e:
        return Result(error=str(e))

3. Pattern: Configuration Management

Use Case: External configuration

from pathlib import Path
import json

class Config:
    def __init__(self, config_file: Path):
        with open(config_file) as f:
            self._config = json.load(f)

    def get(self, key: str, default=None):
        return self._config.get(key, default)

4. Pattern: Dependency Injection

Use Case: Loose coupling and testability

from abc import ABC, abstractmethod

class DataSource(ABC):
    @abstractmethod
    def get_data(self):
        pass

class FileDataSource(DataSource):
    def get_data(self):
        # Read from file
        pass

class Service:
    def __init__(self, data_source: DataSource):
        self.data_source = data_source

    def process(self):
        data = self.data_source.get_data()
        # Process data

5. Pattern: Factory Method

Use Case: Object creation abstraction

class Creator(ABC):
    @abstractmethod
    def create(self):
        pass

class ConcreteCreator(Creator):
    def create(self):
        return ConcreteProduct()

Advanced Patterns

6. Pattern: Repository Pattern

Use Case: Data access abstraction

from typing import List, Optional

class Repository(ABC):
    @abstractmethod
    def find_by_id(self, id: str) -> Optional[dict]:
        pass

    @abstractmethod
    def find_all(self) -> List[dict]:
        pass

    @abstractmethod
    def save(self, entity: dict) -> None:
        pass

7. Pattern: Strategy Pattern

Use Case: Runtime algorithm selection

class Strategy(ABC):
    @abstractmethod
    def execute(self, data):
        pass

class Context:
    def __init__(self, strategy: Strategy):
        self._strategy = strategy

    def set_strategy(self, strategy: Strategy):
        self._strategy = strategy

    def execute(self, data):
        return self._strategy.execute(data)

Real-World Applications

Example: Complete Application

# A production-ready example combining multiple patterns

from typing import Protocol, List
import logging

logger = logging.getLogger(__name__)

class DataProcessor(Protocol):
    def process(self, data: dict) -> dict:
        ...

class ValidationProcessor:
    def process(self, data: dict) -> dict:
        # Validate data
        if not data:
            raise ValueError("Empty data")
        return data

class TransformProcessor:
    def process(self, data: dict) -> dict:
        # Transform data
        return {k: str(v).upper() for k, v in data.items()}

class Pipeline:
    def __init__(self, processors: List[DataProcessor]):
        self.processors = processors

    def execute(self, data: dict) -> dict:
        result = data
        for processor in self.processors:
            try:
                result = processor.process(result)
            except Exception as e:
                logger.error(f"Processing failed: {e}")
                raise
        return result

# Usage
pipeline = Pipeline([
    ValidationProcessor(),
    TransformProcessor(),
])

result = pipeline.execute({"name": "test"})

Performance Best Practices

  1. Use appropriate data structures: Choose the right data structure for your use case
  2. Lazy evaluation: Don't compute until needed
  3. Caching: Cache expensive operations
  4. Profiling: Measure before optimizing
  5. Batch operations: Process in batches when possible

Common Pitfalls

Pitfall 1: Over-engineering

Problem: Adding unnecessary complexity

Solution: Start simple, add complexity only when needed

Pitfall 2: Ignoring Error Handling

Problem: Not handling edge cases

Solution: Use explicit error handling patterns

Pitfall 3: Poor Testing

Problem: Insufficient test coverage

Solution: Write tests alongside code

Testing

Unit Testing

import pytest

class TestPipeline:
    def test_empty_pipeline(self):
        pipeline = Pipeline([])
        result = pipeline.execute({"test": "data"})
        assert result == {"test": "data"}

    def test_validation_processor(self):
        processor = ValidationProcessor()
        with pytest.raises(ValueError):
            processor.process({})

Integration Testing

def test_full_pipeline():
    pipeline = Pipeline([
        ValidationProcessor(),
        TransformProcessor(),
    ])
    result = pipeline.execute({"key": "value"})
    assert result == {"KEY": "VALUE"}

Resources

  • Official documentation
  • Community best practices
  • Design pattern references
  • Performance optimization guides

Best Practices Summary

  1. Follow SOLID principles
  2. Write testable code
  3. Handle errors explicitly
  4. Document public APIs
  5. Keep it simple
  6. Measure performance
  7. Security first
  8. Maintainable design
  9. Use type hints
  10. Continuous improvement