| name | angular-development-patterns |
| description | Master modern angular development with standalone components and signals patterns, best practices, and modern techniques |
Angular Development Patterns
Comprehensive guide to modern angular development with standalone components and signals using modern best practices.
When to Use This Skill
- Building modern angular development with standalone components and signals applications
- Implementing production-ready solutions
- Optimizing performance and scalability
- Following industry best practices
- Creating maintainable, testable code
Core Concepts
1. Fundamental Principles
Modern Angular development with standalone components and signals is built on several key principles:
- Clarity: Code should be easy to understand
- Maintainability: Design for long-term maintenance
- Testability: Write code that's easy to test
- Performance: Consider efficiency from the start
- Security: Build security in from the beginning
2. Architecture Patterns
Common architectural patterns include:
- Modular design
- Separation of concerns
- Dependency injection
- Configuration management
- Error handling strategies
3. Development Workflow
Standard workflow for modern angular development with standalone components and signals:
- Requirements analysis
- Design and planning
- Implementation
- Testing
- Documentation
- Deployment
- Monitoring and maintenance
Quick Start
Here's a minimal example to get started:
# Quick start example
def main():
print("Getting started with modern angular development with standalone components and signals")
if __name__ == "__main__":
main()
Fundamental Patterns
1. Pattern: Basic Structure
Use Case: Starting point for most projects
class BasicExample:
def __init__(self, config: dict = None):
self.config = config or {}
def process(self, data):
# Process data
return data
2. Pattern: Error Handling
Use Case: Robust error management
from typing import Optional
class Result:
def __init__(self, value=None, error: Optional[str] = None):
self.value = value
self.error = error
@property
def is_success(self) -> bool:
return self.error is None
def safe_operation(data) -> Result:
try:
result = process_data(data)
return Result(value=result)
except Exception as e:
return Result(error=str(e))
3. Pattern: Configuration Management
Use Case: External configuration
from pathlib import Path
import json
class Config:
def __init__(self, config_file: Path):
with open(config_file) as f:
self._config = json.load(f)
def get(self, key: str, default=None):
return self._config.get(key, default)
4. Pattern: Dependency Injection
Use Case: Loose coupling and testability
from abc import ABC, abstractmethod
class DataSource(ABC):
@abstractmethod
def get_data(self):
pass
class FileDataSource(DataSource):
def get_data(self):
# Read from file
pass
class Service:
def __init__(self, data_source: DataSource):
self.data_source = data_source
def process(self):
data = self.data_source.get_data()
# Process data
5. Pattern: Factory Method
Use Case: Object creation abstraction
class Creator(ABC):
@abstractmethod
def create(self):
pass
class ConcreteCreator(Creator):
def create(self):
return ConcreteProduct()
Advanced Patterns
6. Pattern: Repository Pattern
Use Case: Data access abstraction
from typing import List, Optional
class Repository(ABC):
@abstractmethod
def find_by_id(self, id: str) -> Optional[dict]:
pass
@abstractmethod
def find_all(self) -> List[dict]:
pass
@abstractmethod
def save(self, entity: dict) -> None:
pass
7. Pattern: Strategy Pattern
Use Case: Runtime algorithm selection
class Strategy(ABC):
@abstractmethod
def execute(self, data):
pass
class Context:
def __init__(self, strategy: Strategy):
self._strategy = strategy
def set_strategy(self, strategy: Strategy):
self._strategy = strategy
def execute(self, data):
return self._strategy.execute(data)
Real-World Applications
Example: Complete Application
# A production-ready example combining multiple patterns
from typing import Protocol, List
import logging
logger = logging.getLogger(__name__)
class DataProcessor(Protocol):
def process(self, data: dict) -> dict:
...
class ValidationProcessor:
def process(self, data: dict) -> dict:
# Validate data
if not data:
raise ValueError("Empty data")
return data
class TransformProcessor:
def process(self, data: dict) -> dict:
# Transform data
return {k: str(v).upper() for k, v in data.items()}
class Pipeline:
def __init__(self, processors: List[DataProcessor]):
self.processors = processors
def execute(self, data: dict) -> dict:
result = data
for processor in self.processors:
try:
result = processor.process(result)
except Exception as e:
logger.error(f"Processing failed: {e}")
raise
return result
# Usage
pipeline = Pipeline([
ValidationProcessor(),
TransformProcessor(),
])
result = pipeline.execute({"name": "test"})
Performance Best Practices
- Use appropriate data structures: Choose the right data structure for your use case
- Lazy evaluation: Don't compute until needed
- Caching: Cache expensive operations
- Profiling: Measure before optimizing
- Batch operations: Process in batches when possible
Common Pitfalls
Pitfall 1: Over-engineering
Problem: Adding unnecessary complexity
Solution: Start simple, add complexity only when needed
Pitfall 2: Ignoring Error Handling
Problem: Not handling edge cases
Solution: Use explicit error handling patterns
Pitfall 3: Poor Testing
Problem: Insufficient test coverage
Solution: Write tests alongside code
Testing
Unit Testing
import pytest
class TestPipeline:
def test_empty_pipeline(self):
pipeline = Pipeline([])
result = pipeline.execute({"test": "data"})
assert result == {"test": "data"}
def test_validation_processor(self):
processor = ValidationProcessor()
with pytest.raises(ValueError):
processor.process({})
Integration Testing
def test_full_pipeline():
pipeline = Pipeline([
ValidationProcessor(),
TransformProcessor(),
])
result = pipeline.execute({"key": "value"})
assert result == {"KEY": "VALUE"}
Resources
- Official documentation
- Community best practices
- Design pattern references
- Performance optimization guides
Best Practices Summary
- Follow SOLID principles
- Write testable code
- Handle errors explicitly
- Document public APIs
- Keep it simple
- Measure performance
- Security first
- Maintainable design
- Use type hints
- Continuous improvement