| name | stan-fundamentals |
| description | Foundational knowledge for writing Stan 2.37 models including program structure, type system, distributions, and best practices. Use when creating or reviewing Stan models. |
Stan Fundamentals
When to Use This Skill
- Writing new Stan models from scratch
- Understanding Stan program structure
- Learning Stan syntax and conventions
- Translating models from other languages to Stan
- Optimizing existing Stan code
Program Structure
Stan models have up to 7 blocks in this exact order:
functions { } // User-defined functions
data { } // Input data declarations
transformed data { } // Data preprocessing
parameters { } // Model parameters
transformed parameters { } // Derived parameters
model { } // Log probability
generated quantities { } // Posterior predictions
All blocks are optional. Empty string is valid (but useless) Stan program.
Type System Quick Reference
Scalars
int n; // Integer
real x; // Real number
complex z; // Complex number
Vectors and Matrices
vector[N] v; // Column vector
row_vector[N] r; // Row vector
matrix[M, N] A; // Matrix
Arrays (Modern Syntax)
array[N] real x; // 1D array of reals
array[M, N] int y; // 2D array of integers
array[J] vector[K] theta; // Array of vectors
Constrained Types
real<lower=0> sigma; // Non-negative
real<lower=0, upper=1> p; // Probability
simplex[K] theta; // Sums to 1
ordered[K] c; // Ascending
corr_matrix[K] Omega; // Correlation
cov_matrix[K] Sigma; // Covariance
cholesky_factor_corr[K] L_Omega; // Cholesky correlation
Key Distributions
Continuous (SD parameterization!)
y ~ normal(mu, sigma); // sigma is SD
y ~ student_t(nu, mu, sigma);
y ~ cauchy(mu, sigma);
y ~ exponential(lambda);
y ~ gamma(alpha, beta);
y ~ beta(a, b);
y ~ lognormal(mu, sigma);
Discrete
y ~ bernoulli(theta);
y ~ binomial(n, theta);
y ~ poisson(lambda);
y ~ neg_binomial_2(mu, phi);
y ~ categorical(theta);
Multivariate
y ~ multi_normal(mu, Sigma); // Sigma is COVARIANCE
y ~ multi_normal_cholesky(mu, L);
y ~ lkj_corr(eta);
Essential Patterns
Vectorization
// GOOD - Efficient
y ~ normal(mu, sigma);
// BAD - Slow
for (n in 1:N) y[n] ~ normal(mu[n], sigma);
Non-Centered Parameterization
parameters {
vector[J] theta_raw;
}
transformed parameters {
vector[J] theta = mu + tau * theta_raw;
}
model {
theta_raw ~ std_normal();
}
Target Syntax
// These are equivalent:
y ~ normal(mu, sigma);
target += normal_lpdf(y | mu, sigma);
Common Priors
// Location parameters
mu ~ normal(0, 10);
// Scale parameters
sigma ~ exponential(1);
sigma ~ cauchy(0, 2.5); // half-Cauchy when sigma > 0
// Probabilities
theta ~ beta(1, 1); // Uniform on (0,1)
// Regression coefficients
beta ~ normal(0, 2.5);
// Correlation matrices
Omega ~ lkj_corr(2); // eta=2 favors identity
R Integration (cmdstanr)
library(cmdstanr)
mod <- cmdstan_model("model.stan")
fit <- mod$sample(data = stan_data, chains = 4)
fit$summary()
fit$cmdstan_diagnose()
Bayesian Workflow (Statistical Rethinking)
1. Prior Predictive Check
# Simulate from priors before fitting
n_sim <- 1000
prior_alpha <- rnorm(n_sim, 0, 10)
prior_sigma <- rexp(n_sim, 1)
# Plot: do these produce sensible y values?
2. Fit Model
fit <- mod$sample(data = stan_data, chains = 4, adapt_delta = 0.95)
3. Diagnostics
fit$summary() # Rhat, ESS
fit$cmdstan_diagnose() # Divergences, treedepth
library(bayesplot)
mcmc_rank_hist(fit$draws()) # Ranked traceplots (preferred)
4. Posterior Predictive Check
y_rep <- fit$draws("y_rep", format = "matrix")
library(bayesplot)
ppc_dens_overlay(y, y_rep[1:100, ])
5. Model Comparison
library(loo)
loo1 <- loo(fit1$draws("log_lik"))
loo2 <- loo(fit2$draws("log_lik"))
loo_compare(loo1, loo2)
link vs sim Pattern
link(): Uncertainty in mu (epistemic)
# Posterior of expected value
post <- fit$draws(format = "df")
mu <- post$alpha + post$beta * x_new # Matrix of mu samples
mu_PI <- apply(mu, 2, quantile, c(0.055, 0.945))
sim(): Prediction interval (epistemic + aleatoric)
# Includes observation noise
y_sim <- rnorm(n_samples, mu, post$sigma)
y_PI <- apply(y_sim, 2, quantile, c(0.055, 0.945))
Generated Quantities Template
Always include for diagnostics and model comparison:
generated quantities {
vector[N] log_lik; // For LOO/WAIC
array[N] real y_rep; // For posterior predictive checks
for (n in 1:N) {
log_lik[n] = normal_lpdf(y[n] | mu[n], sigma);
y_rep[n] = normal_rng(mu[n], sigma);
}
}
Diagnostic Checklist
- Rhat < 1.01 for all parameters
- ESS_bulk > 400
- ESS_tail > 400
- Zero divergences
- Not hitting max_treedepth
- Prior predictive produces sensible values
- Posterior predictive matches data pattern
Key Differences from BUGS
| Feature | Stan | BUGS/JAGS |
|---|---|---|
| Normal | normal(mu, sigma) SD |
dnorm(mu, tau) precision |
| MVN | multi_normal(mu, Sigma) cov |
dmnorm(mu, Omega) precision |
| Execution | Sequential (order matters) | Declarative (order doesn't matter) |
| Sampling | HMC/NUTS | Gibbs/Metropolis |