Claude Code Plugins

Community-maintained marketplace

Feedback

stan-fundamentals

@choxos/BayesianAgent
0
0

Foundational knowledge for writing Stan 2.37 models including program structure, type system, distributions, and best practices. Use when creating or reviewing Stan models.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name stan-fundamentals
description Foundational knowledge for writing Stan 2.37 models including program structure, type system, distributions, and best practices. Use when creating or reviewing Stan models.

Stan Fundamentals

When to Use This Skill

  • Writing new Stan models from scratch
  • Understanding Stan program structure
  • Learning Stan syntax and conventions
  • Translating models from other languages to Stan
  • Optimizing existing Stan code

Program Structure

Stan models have up to 7 blocks in this exact order:

functions { }           // User-defined functions
data { }                // Input data declarations
transformed data { }    // Data preprocessing
parameters { }          // Model parameters
transformed parameters { } // Derived parameters
model { }               // Log probability
generated quantities { }  // Posterior predictions

All blocks are optional. Empty string is valid (but useless) Stan program.

Type System Quick Reference

Scalars

int n;                    // Integer
real x;                   // Real number
complex z;                // Complex number

Vectors and Matrices

vector[N] v;              // Column vector
row_vector[N] r;          // Row vector
matrix[M, N] A;           // Matrix

Arrays (Modern Syntax)

array[N] real x;          // 1D array of reals
array[M, N] int y;        // 2D array of integers
array[J] vector[K] theta; // Array of vectors

Constrained Types

real<lower=0> sigma;              // Non-negative
real<lower=0, upper=1> p;         // Probability
simplex[K] theta;                 // Sums to 1
ordered[K] c;                     // Ascending
corr_matrix[K] Omega;             // Correlation
cov_matrix[K] Sigma;              // Covariance
cholesky_factor_corr[K] L_Omega;  // Cholesky correlation

Key Distributions

Continuous (SD parameterization!)

y ~ normal(mu, sigma);      // sigma is SD
y ~ student_t(nu, mu, sigma);
y ~ cauchy(mu, sigma);
y ~ exponential(lambda);
y ~ gamma(alpha, beta);
y ~ beta(a, b);
y ~ lognormal(mu, sigma);

Discrete

y ~ bernoulli(theta);
y ~ binomial(n, theta);
y ~ poisson(lambda);
y ~ neg_binomial_2(mu, phi);
y ~ categorical(theta);

Multivariate

y ~ multi_normal(mu, Sigma);        // Sigma is COVARIANCE
y ~ multi_normal_cholesky(mu, L);
y ~ lkj_corr(eta);

Essential Patterns

Vectorization

// GOOD - Efficient
y ~ normal(mu, sigma);

// BAD - Slow
for (n in 1:N) y[n] ~ normal(mu[n], sigma);

Non-Centered Parameterization

parameters {
  vector[J] theta_raw;
}
transformed parameters {
  vector[J] theta = mu + tau * theta_raw;
}
model {
  theta_raw ~ std_normal();
}

Target Syntax

// These are equivalent:
y ~ normal(mu, sigma);
target += normal_lpdf(y | mu, sigma);

Common Priors

// Location parameters
mu ~ normal(0, 10);

// Scale parameters
sigma ~ exponential(1);
sigma ~ cauchy(0, 2.5);  // half-Cauchy when sigma > 0

// Probabilities
theta ~ beta(1, 1);  // Uniform on (0,1)

// Regression coefficients
beta ~ normal(0, 2.5);

// Correlation matrices
Omega ~ lkj_corr(2);  // eta=2 favors identity

R Integration (cmdstanr)

library(cmdstanr)
mod <- cmdstan_model("model.stan")
fit <- mod$sample(data = stan_data, chains = 4)
fit$summary()
fit$cmdstan_diagnose()

Bayesian Workflow (Statistical Rethinking)

1. Prior Predictive Check

# Simulate from priors before fitting
n_sim <- 1000
prior_alpha <- rnorm(n_sim, 0, 10)
prior_sigma <- rexp(n_sim, 1)
# Plot: do these produce sensible y values?

2. Fit Model

fit <- mod$sample(data = stan_data, chains = 4, adapt_delta = 0.95)

3. Diagnostics

fit$summary()              # Rhat, ESS
fit$cmdstan_diagnose()     # Divergences, treedepth
library(bayesplot)
mcmc_rank_hist(fit$draws()) # Ranked traceplots (preferred)

4. Posterior Predictive Check

y_rep <- fit$draws("y_rep", format = "matrix")
library(bayesplot)
ppc_dens_overlay(y, y_rep[1:100, ])

5. Model Comparison

library(loo)
loo1 <- loo(fit1$draws("log_lik"))
loo2 <- loo(fit2$draws("log_lik"))
loo_compare(loo1, loo2)

link vs sim Pattern

link(): Uncertainty in mu (epistemic)

# Posterior of expected value
post <- fit$draws(format = "df")
mu <- post$alpha + post$beta * x_new  # Matrix of mu samples
mu_PI <- apply(mu, 2, quantile, c(0.055, 0.945))

sim(): Prediction interval (epistemic + aleatoric)

# Includes observation noise
y_sim <- rnorm(n_samples, mu, post$sigma)
y_PI <- apply(y_sim, 2, quantile, c(0.055, 0.945))

Generated Quantities Template

Always include for diagnostics and model comparison:

generated quantities {
  vector[N] log_lik;  // For LOO/WAIC
  array[N] real y_rep;  // For posterior predictive checks

  for (n in 1:N) {
    log_lik[n] = normal_lpdf(y[n] | mu[n], sigma);
    y_rep[n] = normal_rng(mu[n], sigma);
  }
}

Diagnostic Checklist

  • Rhat < 1.01 for all parameters
  • ESS_bulk > 400
  • ESS_tail > 400
  • Zero divergences
  • Not hitting max_treedepth
  • Prior predictive produces sensible values
  • Posterior predictive matches data pattern

Key Differences from BUGS

Feature Stan BUGS/JAGS
Normal normal(mu, sigma) SD dnorm(mu, tau) precision
MVN multi_normal(mu, Sigma) cov dmnorm(mu, Omega) precision
Execution Sequential (order matters) Declarative (order doesn't matter)
Sampling HMC/NUTS Gibbs/Metropolis