Survival Models
Data Structure
data {
int<lower=0> N;
vector<lower=0>[N] time; // Observed/censored time
array[N] int<lower=0,upper=1> event; // 1=event, 0=censored
matrix[N, K] X; // Covariates
}
Exponential Model
Stan
parameters {
real alpha; // Log baseline hazard
vector[K] beta;
}
model {
alpha ~ normal(0, 2);
beta ~ normal(0, 1);
for (n in 1:N) {
real lambda = exp(alpha + X[n] * beta);
if (event[n] == 1)
target += exponential_lpdf(time[n] | lambda);
else
target += exponential_lccdf(time[n] | lambda); // Survival
}
}
JAGS (with censoring)
model {
for (i in 1:N) {
is.censored[i] ~ dinterval(t[i], t.cen[i])
t[i] ~ dexp(lambda[i])
log(lambda[i]) <- alpha + inprod(X[i,], beta[])
}
alpha ~ dnorm(0, 0.25)
for (k in 1:K) { beta[k] ~ dnorm(0, 1) }
}
Weibull Model
Stan (AFT Parameterization)
parameters {
real alpha; // Intercept (log scale)
vector[K] beta;
real<lower=0> shape; // Weibull shape
}
model {
alpha ~ normal(0, 5);
beta ~ normal(0, 2);
shape ~ exponential(1);
for (n in 1:N) {
real mu = alpha + X[n] * beta;
if (event[n] == 1)
target += weibull_lpdf(time[n] | shape, exp(mu));
else
target += weibull_lccdf(time[n] | shape, exp(mu));
}
}
JAGS
model {
for (i in 1:N) {
is.censored[i] ~ dinterval(t[i], t.cen[i])
t[i] ~ dweib(shape, lambda[i])
log(lambda[i]) <- alpha + inprod(X[i,], beta[])
}
shape ~ dgamma(1, 0.001)
alpha ~ dnorm(0, 0.01)
for (k in 1:K) { beta[k] ~ dnorm(0, 0.01) }
}
Log-Normal Model
Stan
parameters {
real alpha;
vector[K] beta;
real<lower=0> sigma;
}
model {
for (n in 1:N) {
real mu = alpha + X[n] * beta;
if (event[n] == 1)
target += lognormal_lpdf(time[n] | mu, sigma);
else
target += lognormal_lccdf(time[n] | mu, sigma);
}
}
Piecewise Exponential (Cox-like)
Stan
data {
int<lower=0> N;
int<lower=0> J; // Number of intervals
vector[J] cuts; // Cut points
matrix[N, J] d; // Time in each interval
array[N] int<lower=0,upper=1> event;
array[N] int<lower=1,upper=J> interval; // Event interval
matrix[N, K] X;
}
parameters {
vector[J] log_baseline; // Log baseline hazard per interval
vector[K] beta;
}
model {
log_baseline ~ normal(0, 2);
beta ~ normal(0, 1);
for (n in 1:N) {
real log_hazard = log_baseline[interval[n]] + X[n] * beta;
// Contribution from all intervals
for (j in 1:J)
target += -d[n,j] * exp(log_baseline[j] + X[n] * beta);
// Event contribution
if (event[n] == 1)
target += log_hazard;
}
}
Frailty Model (Random Effects)
Stan
data {
int<lower=0> N;
int<lower=0> G; // Number of groups
array[N] int<lower=1,upper=G> group;
// ... rest of survival data
}
parameters {
real alpha;
vector[K] beta;
real<lower=0> shape;
vector[G] frailty_raw; // Non-centered
real<lower=0> sigma_frailty;
}
transformed parameters {
vector[G] frailty = sigma_frailty * frailty_raw;
}
model {
sigma_frailty ~ exponential(1);
frailty_raw ~ std_normal();
for (n in 1:N) {
real mu = alpha + X[n] * beta + frailty[group[n]];
// ... Weibull likelihood with censoring
}
}
Generated Quantities
generated quantities {
// Hazard ratio for 1-unit increase in X[,1]
real HR = exp(beta[1]);
// Median survival at X=0
real median_survival = exp(alpha) * pow(log(2), 1/shape);
// Survival function at time t=1
array[N] real S_1;
for (n in 1:N)
S_1[n] = exp(-pow(1 / exp(alpha + X[n] * beta), shape));
}
Interpretation
- Weibull shape: <1 decreasing hazard, =1 constant (exponential), >1 increasing
- HR: Hazard ratio (multiplicative effect on hazard)
- AFT: Accelerated failure time (multiplicative effect on survival time)