| name | functional |
| description | Functional programming patterns with immutable data. Use when writing logic or data transformations. |
Functional Patterns
Core Principles
- No data mutation - immutable structures only
- Pure functions wherever possible
- Composition over inheritance
- No comments - code should be self-documenting
- Array methods over loops
- Options objects over positional parameters
Why Immutability Matters
Immutable data is the foundation of functional programming. Understanding WHY helps you embrace it:
- Predictable: Same input always produces same output (no hidden state changes)
- Debuggable: State doesn't change unexpectedly - easier to trace bugs
- Testable: No hidden mutable state makes tests straightforward
- React-friendly: React's reconciliation and memoization optimizations work correctly
- Concurrency-safe: No race conditions when data can't change
Example of the problem:
// ❌ WRONG - Mutation creates unpredictable behavior
const user = { name: 'Alice', permissions: ['read'] };
grantPermission(user, 'write'); // Mutates user.permissions internally
console.log(user.permissions); // ['read', 'write'] - SURPRISE! user changed
// ✅ CORRECT - Immutable approach is predictable
const user = { name: 'Alice', permissions: ['read'] };
const updatedUser = grantPermission(user, 'write'); // Returns new object
console.log(user.permissions); // ['read'] - original unchanged
console.log(updatedUser.permissions); // ['read', 'write'] - new version
Functional Light
We follow "Functional Light" principles - practical functional patterns without heavy abstractions:
What we DO:
- Pure functions and immutable data
- Composition and declarative code
- Array methods over loops
- Type safety and readonly
What we DON'T do:
- Category theory or monads
- Heavy FP libraries (fp-ts, Ramda)
- Over-engineering with abstractions
- Functional for the sake of functional
Why: The goal is maintainable, testable code - not academic purity. If a functional pattern makes code harder to understand, don't use it.
Example - Keep it simple:
// ✅ GOOD - Simple, clear, functional
const activeUsers = users.filter(u => u.active);
const userNames = activeUsers.map(u => u.name);
// ❌ OVER-ENGINEERED - Unnecessary abstraction
const compose = <T>(...fns: Array<(arg: T) => T>) => (x: T) =>
fns.reduceRight((v, f) => f(v), x);
const activeUsers = compose(
filter((u: User) => u.active),
map((u: User) => u.name)
)(users);
No Comments / Self-Documenting Code
Code should be clear through naming and structure. Comments indicate unclear code.
Exception: JSDoc for public APIs when generating documentation.
Examples
❌ WRONG - Comments explaining unclear code
// Get the user and check if active and has permission
function check(u: any) {
// Check user exists
if (u) {
// Check if active
if (u.a) {
// Check permission
if (u.p) {
return true;
}
}
}
return false;
}
✅ CORRECT - Self-documenting code
function canUserAccessResource(user: User | undefined): boolean {
if (!user) return false;
if (!user.isActive) return false;
if (!user.hasPermission) return false;
return true;
}
// Even better - compose predicates
function canUserAccessResource(user: User | undefined): boolean {
return user?.isActive && user?.hasPermission;
}
When Code Needs Explaining
If code requires comments to understand, refactor instead:
- Extract functions with descriptive names
- Use meaningful variable names
- Break complex logic into steps
- Use type aliases for domain concepts
✅ Acceptable JSDoc for public APIs
/**
* Registers a scenario for runtime switching.
* @param definition - The scenario configuration including mocks and metadata
* @throws {ValidationError} if scenario ID is duplicate
*/
export function registerScenario(definition: ScenaristScenario): void {
// Implementation
}
Array Methods Over Loops
Prefer map, filter, reduce for transformations. They're declarative (what, not how) and naturally immutable.
Map - Transform Each Element
❌ WRONG - Imperative loop
const scenarioIds = [];
for (const scenario of scenarios) {
scenarioIds.push(scenario.id);
}
✅ CORRECT - Functional map
const scenarioIds = scenarios.map(s => s.id);
Filter - Select Subset
❌ WRONG - Imperative loop
const activeScenarios = [];
for (const scenario of scenarios) {
if (scenario.active) {
activeScenarios.push(scenario);
}
}
✅ CORRECT - Functional filter
const activeScenarios = scenarios.filter(s => s.active);
Reduce - Aggregate Values
❌ WRONG - Imperative loop
let total = 0;
for (const item of items) {
total += item.price * item.quantity;
}
✅ CORRECT - Functional reduce
const total = items.reduce((sum, item) => sum + item.price * item.quantity, 0);
Chaining Multiple Operations
✅ CORRECT - Compose array methods
const total = items
.filter(item => item.active)
.map(item => item.price * item.quantity)
.reduce((sum, price) => sum + price, 0);
When Loops Are Acceptable
Imperative loops are fine when:
- Early termination is essential (use
for...ofwithbreak) - Performance critical (measure first!)
- Side effects are necessary (logging, DOM manipulation)
But even then, consider:
Array.find()for early terminationArray.some()/Array.every()for boolean checks
Options Objects Over Positional Parameters
Default to options objects for function parameters. This improves readability and reduces ordering dependencies.
Why Options Objects?
Benefits:
- Named parameters (clear what each argument means)
- No ordering dependencies
- Easy to add optional parameters
- Self-documenting at call site
- TypeScript autocomplete
Examples
❌ WRONG - Positional parameters
function createPayment(
amount: number,
currency: string,
cardId: string,
cvv: string,
saveCard: boolean,
sendReceipt: boolean
): Payment {
// ...
}
// Call site - unclear what parameters mean
createPayment(100, 'GBP', 'card_123', '123', true, false);
✅ CORRECT - Options object
type CreatePaymentOptions = {
amount: number;
currency: string;
cardId: string;
cvv: string;
saveCard?: boolean;
sendReceipt?: boolean;
};
function createPayment(options: CreatePaymentOptions): Payment {
const { amount, currency, cardId, cvv, saveCard = false, sendReceipt = true } = options;
// ...
}
// Call site - crystal clear
createPayment({
amount: 100,
currency: 'GBP',
cardId: 'card_123',
cvv: '123',
saveCard: true,
});
When Positional Parameters Are OK
Use positional parameters when:
- 1-2 parameters max
- Order is obvious (e.g.,
add(a, b)) - High-frequency utility functions
// ✅ OK - Obvious ordering, few parameters
function add(a: number, b: number): number {
return a + b;
}
function updateUser(user: User, changes: Partial<User>): User {
return { ...user, ...changes };
}
Pure Functions
Pure functions have no side effects and always return the same output for the same input.
What Makes a Function Pure?
No side effects
- Doesn't mutate external state
- Doesn't modify function arguments
- Doesn't perform I/O (network, file system, console)
Deterministic
- Same input → same output
- No dependency on external state (Date.now(), Math.random(), global vars)
Referentially transparent
- Can replace function call with its return value
Examples
❌ WRONG - Impure function (mutations)
function addScenario(scenarios: Scenario[], newScenario: Scenario): void {
scenarios.push(newScenario); // ❌ Mutates input
}
let count = 0;
function increment(): number {
count++; // ❌ Modifies external state
return count;
}
✅ CORRECT - Pure functions
function addScenario(
scenarios: ReadonlyArray<Scenario>,
newScenario: Scenario,
): ReadonlyArray<Scenario> {
return [...scenarios, newScenario]; // ✅ Returns new array
}
function increment(count: number): number {
return count + 1; // ✅ No external state
}
Benefits of Pure Functions
- Testable: No setup/teardown needed
- Composable: Easy to combine
- Predictable: No hidden behavior
- Cacheable: Memoization possible
- Parallelizable: No race conditions
When Impurity Is Necessary
Some functions must be impure (I/O, randomness, side effects). Isolate them:
// ✅ CORRECT - Isolate impure functions at edges
// Pure core
function calculateTotal(items: ReadonlyArray<Item>): number {
return items.reduce((sum, item) => sum + item.price, 0);
}
// Impure shell (isolated)
async function saveOrder(order: Order): Promise<void> {
const total = calculateTotal(order.items); // Pure
await database.save({ ...order, total }); // Impure (I/O)
}
Pattern: Keep impure functions at system boundaries (adapters, ports). Keep core domain logic pure.
Composition Over Complex Logic
Compose small functions into larger ones. Each function does one thing well.
Benefits of Composition
- Easier to understand (each piece is simple)
- Easier to test (test pieces independently)
- Easier to reuse (pieces work in multiple contexts)
- Easier to maintain (change one piece without affecting others)
Examples
❌ WRONG - Complex monolithic function
function registerScenario(input: unknown) {
if (typeof input !== 'object' || !input) {
throw new Error('Invalid input');
}
if (!('id' in input) || typeof input.id !== 'string') {
throw new Error('Missing id');
}
if (!('name' in input) || typeof input.name !== 'string') {
throw new Error('Missing name');
}
if (!('mocks' in input) || !Array.isArray(input.mocks)) {
throw new Error('Missing mocks');
}
// ... 50 more lines of validation and registration
}
✅ CORRECT - Composed functions
// Small, focused functions
const validate = (input: unknown) => ScenarioSchema.parse(input);
const register = (scenario: Scenario) => registry.register(scenario);
// Compose them
const registerScenario = (input: unknown) => register(validate(input));
// Even better - use pipe/compose utilities
const registerScenario = pipe(
validate,
register,
);
Composing Immutable Transformations
// Small transformation functions
const addDiscount = (order: Order, percent: number): Order => ({
...order,
total: order.total * (1 - percent / 100),
});
const addShipping = (order: Order, cost: number): Order => ({
...order,
total: order.total + cost,
});
const addTax = (order: Order, rate: number): Order => ({
...order,
total: order.total * (1 + rate),
});
// Compose them
const finalizeOrder = (order: Order): Order => {
return addTax(
addShipping(
addDiscount(order, 10),
5.99
),
0.2
);
};
// Or use pipe for left-to-right reading
const finalizeOrder = (order: Order): Order =>
pipe(
order,
o => addDiscount(o, 10),
o => addShipping(o, 5.99),
o => addTax(o, 0.2),
);
Readonly Keyword for Immutability
Use readonly on all data structures to signal immutability intent.
readonly on Properties
// ✅ CORRECT - Immutable data structure
type Scenario = {
readonly id: string;
readonly name: string;
readonly description: string;
};
// ❌ WRONG - Mutable
type Scenario = {
id: string;
name: string;
};
ReadonlyArray vs Array
// ✅ CORRECT - Immutable array
type Scenario = {
readonly mocks: ReadonlyArray<Mock>;
};
// ❌ WRONG - Mutable array
type Scenario = {
readonly mocks: Mock[];
};
Nested readonly
// ✅ CORRECT - Deep immutability
type Mock = {
readonly method: 'GET' | 'POST';
readonly response: {
readonly status: number;
readonly body: readonly unknown[];
};
};
Why readonly Matters
- Compiler enforces immutability: TypeScript errors on mutation attempts
- Self-documenting: Signals "don't mutate this"
- Functional programming alignment: Natural fit for FP patterns
- Prevents accidental bugs: Can't accidentally mutate data
Deep Nesting Limitation
Max 2 levels of function nesting. Beyond that, extract functions.
Why Limit Nesting?
- Deeply nested code is hard to read
- Hard to test (many paths through code)
- Hard to modify (tight coupling)
- Sign of missing abstractions
Examples
❌ WRONG - Deep nesting (4+ levels)
function processOrder(order: Order) {
if (order.items.length > 0) {
if (order.customer.verified) {
if (order.total > 0) {
if (order.payment.valid) {
// ... deeply nested logic
}
}
}
}
}
✅ CORRECT - Flat with early returns
function processOrder(order: Order) {
if (order.items.length === 0) return;
if (!order.customer.verified) return;
if (order.total <= 0) return;
if (!order.payment.valid) return;
// Main logic at top level
}
✅ CORRECT - Extract to functions
function processOrder(order: Order) {
if (!canProcessOrder(order)) return;
const validated = validateOrder(order);
return executeOrder(validated);
}
function canProcessOrder(order: Order): boolean {
return order.items.length > 0
&& order.customer.verified
&& order.total > 0
&& order.payment.valid;
}
Immutable Array Operations
Complete catalog of array mutations and their immutable alternatives:
// ❌ WRONG - Mutations
items.push(newItem); // Add to end
items.pop(); // Remove last
items.unshift(newItem); // Add to start
items.shift(); // Remove first
items.splice(index, 1); // Remove at index
items.reverse(); // Reverse order
items.sort(); // Sort
items[i] = newValue; // Update at index
// ✅ CORRECT - Immutable alternatives
const withNew = [...items, newItem]; // Add to end
const withoutLast = items.slice(0, -1); // Remove last
const withFirst = [newItem, ...items]; // Add to start
const withoutFirst = items.slice(1); // Remove first
const removed = [...items.slice(0, index), // Remove at index
...items.slice(index + 1)];
const reversed = [...items].reverse(); // Reverse (copy first!)
const sorted = [...items].sort(); // Sort (copy first!)
const updated = items.map((item, idx) => // Update at index
idx === i ? newValue : item
);
Common patterns:
// Filter out specific item
const withoutItem = items.filter(item => item.id !== targetId);
// Replace specific item
const replaced = items.map(item =>
item.id === targetId ? newItem : item
);
// Insert at specific position
const inserted = [
...items.slice(0, index),
newItem,
...items.slice(index)
];
Immutable Object Updates
// ❌ WRONG
user.name = "New";
Object.assign(user, { name: "New" });
// ✅ CORRECT
const updated = { ...user, name: "New" };
Nested Updates
// ✅ CORRECT - Immutable nested update
const updatedCart = {
...cart,
items: cart.items.map((item, i) =>
i === targetIndex ? { ...item, quantity: newQuantity } : item
),
};
// ✅ CORRECT - Immutable nested array update
const updatedOrder = {
...order,
items: [
...order.items.slice(0, index),
updatedItem,
...order.items.slice(index + 1),
],
};
Early Returns Over Nesting
// ❌ WRONG - Nested conditions
if (user) {
if (user.isActive) {
if (user.hasPermission) {
// do something
}
}
}
// ✅ CORRECT - Early returns (guard clauses)
if (!user) return;
if (!user.isActive) return;
if (!user.hasPermission) return;
// do something
Result Type for Error Handling
type Result<T, E = Error> =
| { readonly success: true; readonly data: T }
| { readonly success: false; readonly error: E };
// Usage
function processPayment(payment: Payment): Result<Transaction> {
if (payment.amount <= 0) {
return { success: false, error: new Error('Invalid amount') };
}
const transaction = executePayment(payment);
return { success: true, data: transaction };
}
// Caller handles both cases explicitly
const result = processPayment(payment);
if (!result.success) {
console.error(result.error);
return;
}
// TypeScript knows result.data exists here
console.log(result.data.transactionId);
Summary Checklist
When writing functional code, verify:
- No data mutation - using spread operators
- Pure functions wherever possible (no side effects)
- Code is self-documenting (no comments needed)
- Array methods (
map,filter,reduce) over loops - Options objects for 3+ parameters
- Composed small functions, not complex monoliths
-
readonlyon all data structure properties -
ReadonlyArray<T>for immutable arrays - Max 2 levels of nesting (use early returns)
- Result types for error handling