| name | smolagents |
| description | Use Hugging Face Smolagents framework for code-based agentic research with tool support. Supports multiple LLM providers and web search. |
Smolagents Skill
This skill leverages Hugging Face's Smolagents framework, a minimalist AI agent library where agents write Python code to accomplish tasks. It's highly efficient (30% token efficiency gain) and supports multiple LLM providers.
Setup
Dependencies: Requires
smolagentswith toolkit extensions.pip install 'smolagents[toolkit]' python-dotenvAPI Key Configuration: Supports multiple LLM providers. At minimum, set one:
# For Hugging Face Inference API (default, free tier available) echo "HF_TOKEN=your_huggingface_token" >> .env # OR for OpenAI echo "OPENAI_API_KEY=your_openai_key" >> .env # OR for Anthropic echo "ANTHROPIC_API_KEY=your_anthropic_key" >> .env if [ -f .gitignore ] && ! grep -q ".env" .gitignore; then echo ".env" >> .gitignore; fi
Usage
Use the scripts/agent.py script to run research tasks.
Command
python3 scripts/agent.py --task "<task_description>" [--model <model_type>] [--model-id <model_name>] [--web-search]
Parameters
--task(Required): The task or research question.--model(Optional): Model type -hf(Hugging Face),openai,anthropic, orlocal(default:hf).--model-id(Optional): Specific model ID to use.--web-search(Optional): Enable web search tool (uses DuckDuckGo).--verbose(Optional): Show detailed execution logs.
Example
# Using Hugging Face Inference API with web search
python3 scripts/agent.py --task "Research the latest developments in transformer architecture improvements" --web-search --verbose
# Using a specific model
python3 scripts/agent.py --task "Analyze the impact of RLHF on LLM performance" --model hf --model-id "Qwen/Qwen2.5-72B-Instruct" --web-search
Output
The script outputs:
- Generated Python code (to stderr for visibility)
- Task execution results
- Final answer or research findings
Features
- Code-as-Action: Agents write and execute Python code to solve tasks
- Tool Support: Web search, file operations, and custom tools
- Multi-Model: Supports HF Inference API, OpenAI, Anthropic, local models
- Efficient: 30% token efficiency improvement over traditional approaches