Claude Code Plugins

Community-maintained marketplace

Feedback

Use Hugging Face Smolagents framework for code-based agentic research with tool support. Supports multiple LLM providers and web search.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name smolagents
description Use Hugging Face Smolagents framework for code-based agentic research with tool support. Supports multiple LLM providers and web search.

Smolagents Skill

This skill leverages Hugging Face's Smolagents framework, a minimalist AI agent library where agents write Python code to accomplish tasks. It's highly efficient (30% token efficiency gain) and supports multiple LLM providers.

Setup

  1. Dependencies: Requires smolagents with toolkit extensions.

    pip install 'smolagents[toolkit]' python-dotenv
    
  2. API Key Configuration: Supports multiple LLM providers. At minimum, set one:

    # For Hugging Face Inference API (default, free tier available)
    echo "HF_TOKEN=your_huggingface_token" >> .env
    
    # OR for OpenAI
    echo "OPENAI_API_KEY=your_openai_key" >> .env
    
    # OR for Anthropic
    echo "ANTHROPIC_API_KEY=your_anthropic_key" >> .env
    
    if [ -f .gitignore ] && ! grep -q ".env" .gitignore; then echo ".env" >> .gitignore; fi
    

Usage

Use the scripts/agent.py script to run research tasks.

Command

python3 scripts/agent.py --task "<task_description>" [--model <model_type>] [--model-id <model_name>] [--web-search]

Parameters

  • --task (Required): The task or research question.
  • --model (Optional): Model type - hf (Hugging Face), openai, anthropic, or local (default: hf).
  • --model-id (Optional): Specific model ID to use.
  • --web-search (Optional): Enable web search tool (uses DuckDuckGo).
  • --verbose (Optional): Show detailed execution logs.

Example

# Using Hugging Face Inference API with web search
python3 scripts/agent.py --task "Research the latest developments in transformer architecture improvements" --web-search --verbose

# Using a specific model
python3 scripts/agent.py --task "Analyze the impact of RLHF on LLM performance" --model hf --model-id "Qwen/Qwen2.5-72B-Instruct" --web-search

Output

The script outputs:

  • Generated Python code (to stderr for visibility)
  • Task execution results
  • Final answer or research findings

Features

  • Code-as-Action: Agents write and execute Python code to solve tasks
  • Tool Support: Web search, file operations, and custom tools
  • Multi-Model: Supports HF Inference API, OpenAI, Anthropic, local models
  • Efficient: 30% token efficiency improvement over traditional approaches