| name | sqlite-agent-amplification |
| description | Dynamically create tools and consult peer agents for enhanced capabilities |
| tags | agent, amplification, dynamic, learning, meta-programming |
| version | 1.0.0 |
Agent Amplification
Purpose
This skill enables agents to amplify their capabilities by:
- Creating new tools dynamically based on requirements
- Consulting specialized peer agents for expert advice
- Recording decision outcomes for machine learning
- Tracking capability evolution over time
Think of it as "meta-programming" for AI agents - giving them the ability to extend themselves.
When to Use
Use this skill when agents need to:
- Create custom tools that don't exist yet
- Consult specialists for domain-specific problems
- Learn from past decisions and outcomes
- Track how capabilities evolve over time
- Coordinate with other agents in multi-agent systems
Available Hooks
sqlite.agent.create_tool
Dynamically create a new tool based on requirements.
Parameters:
name(string, required): Tool name (snake_case)description(string, required): What the tool doesparameters(object, required): Tool parameters schema (JSON Schema)implementation(string, required): Implementation language ('python', 'javascript', 'sql')code(string, optional): Custom implementation codemetadata(object, optional): Additional metadata
Returns:
toolId(string): Unique tool identifierhookName(string): FixiPlug hook name to call the tooldefinition(object): LLM tool definitionsuccess(boolean): Whether creation succeeded
Example:
const tool = await fixiplug.dispatch('sqlite.agent.create_tool', {
name: 'portfolio_rebalancer',
description: 'Rebalance investment portfolio to target allocation',
parameters: {
type: 'object',
properties: {
currentHoldings: {
type: 'object',
description: 'Current holdings by ticker'
},
targetAllocation: {
type: 'object',
description: 'Target allocation percentages'
},
cashAvailable: {
type: 'number',
description: 'Cash available for rebalancing'
}
},
required: ['currentHoldings', 'targetAllocation']
},
implementation: 'python',
code: `
def rebalance(current_holdings, target_allocation, cash_available=0):
# Custom rebalancing logic
total_value = sum(current_holdings.values()) + cash_available
trades = []
for ticker, target_pct in target_allocation.items():
target_value = total_value * target_pct
current_value = current_holdings.get(ticker, 0)
diff = target_value - current_value
if abs(diff) > 0.01: # Threshold
trades.append({
'ticker': ticker,
'action': 'buy' if diff > 0 else 'sell',
'value': abs(diff)
})
return {'trades': trades, 'total_value': total_value}
`,
metadata: {
author: 'portfolio-agent',
domain: 'finance',
version: '1.0.0'
}
});
console.log(`Created tool: ${tool.hookName}`);
// 'dynamic_tool.portfolio_rebalancer'
// Now the tool is available as a FixiPlug hook
const result = await fixiplug.dispatch(tool.hookName, {
currentHoldings: { 'AAPL': 5000, 'GOOGL': 3000 },
targetAllocation: { 'AAPL': 0.6, 'GOOGL': 0.4 }
});
console.log(result.trades);
// [{ ticker: 'AAPL', action: 'buy', value: 800 }]
sqlite.agent.record_decision
Record a decision and its outcome for learning.
Parameters:
decision(object, required): Decision detailstype(string): Decision typecontext(object): Decision contextchosen(any): What was chosenalternatives(array): Other options considered
outcome(object, required): Outcome detailssuccess(boolean): Whether outcome was successfulmetrics(object): Quantitative metricsfeedback(string): Qualitative feedback
metadata(object, optional): Additional metadata
Returns:
decisionId(string): Unique decision identifierrecorded(boolean): Whether recording succeededinsights(object): Any immediate insights
Example:
const record = await fixiplug.dispatch('sqlite.agent.record_decision', {
decision: {
type: 'algorithm-selection',
context: {
problemType: 'time-series-forecasting',
dataSize: 10000,
latencyRequirement: 100 // ms
},
chosen: 'ARIMA',
alternatives: ['LSTM', 'Prophet', 'XGBoost']
},
outcome: {
success: true,
metrics: {
accuracy: 0.94,
latency: 85, // ms
memoryUsage: 120 // MB
},
feedback: 'ARIMA performed well for this stationary time series'
},
metadata: {
agent: 'forecasting-specialist',
timestamp: new Date().toISOString()
}
});
console.log(`Decision recorded: ${record.decisionId}`);
console.log('Insights:', record.insights);
// { recommendation: 'ARIMA is consistently successful for stationary series' }
sqlite.agent.consult_peers
Consult specialized peer agents for expert advice.
Parameters:
question(string, required): Question to askdomain(string, required): Domain areacontext(object, optional): Additional contextmaxPeers(number, optional): Max peers to consult (default: 3)minConfidence(number, optional): Min confidence threshold (default: 0.7)
Returns:
advice(array): Advice from peer agentsconsensus(object): Consensus recommendationconfidence(number): Overall confidence
Example:
const advice = await fixiplug.dispatch('sqlite.agent.consult_peers', {
question: 'Best approach for real-time fraud detection on transaction stream?',
domain: 'security',
context: {
transactionVolume: 10000, // per second
latencyBudget: 50, // ms
fraudRate: 0.02 // 2%
},
maxPeers: 3,
minConfidence: 0.8
});
console.log('Advice received:');
advice.advice.forEach(a => {
console.log(`${a.peer}: ${a.recommendation} (confidence: ${a.confidence})`);
});
// fraud-ml-specialist: Use gradient boosting with real-time scoring (0.92)
// security-architect: Combine rule-based and ML approaches (0.88)
// data-engineer: Stream processing with windowed aggregation (0.85)
console.log('Consensus:', advice.consensus);
// {
// approach: 'hybrid-ml-rules',
// reasoning: 'Combine fast rule-based filtering with ML scoring',
// confidence: 0.88,
// expectedPerformance: { latency: 35, accuracy: 0.96 }
// }
sqlite.agent.track_evolution
Track how agent capabilities evolve over time.
Parameters:
capability(string, required): Capability namemetrics(object, required): Current metricstimestamp(string, optional): Timestamp (ISO 8601)metadata(object, optional): Additional metadata
Returns:
evolutionId(string): Tracking entry IDtrend(object): Capability trend analysisrecorded(boolean): Success status
Example:
const evolution = await fixiplug.dispatch('sqlite.agent.track_evolution', {
capability: 'query-optimization',
metrics: {
avgLatency: 120, // ms
successRate: 0.94,
complexity: 'medium',
toolsUsed: 3
},
timestamp: new Date().toISOString(),
metadata: {
agent: 'database-optimizer',
version: '2.1.0'
}
});
console.log('Trend:', evolution.trend);
// {
// direction: 'improving',
// latencyChange: -15, // 15ms faster than last week
// successRateChange: +0.03, // 3% better
// recommendation: 'Current approach is working well, maintain'
// }
Best Practices
1. Tool Creation Strategy
When to Create Tools:
- Specific task needed repeatedly
- Existing tools don't quite fit
- Domain-specific logic required
- Performance optimization needed
When NOT to Create Tools:
- One-off tasks (just do them directly)
- General tools already exist
- Overly complex requirements
- Unclear specification
2. Decision Recording Strategy
Always Record:
- Algorithm/approach selections
- Parameter tuning decisions
- Architecture choices
- Performance trade-offs
Include Context:
- Problem characteristics
- Constraints and requirements
- Why alternatives were rejected
- Expected vs actual outcomes
3. Peer Consultation Strategy
Good Questions:
- Specific, well-defined problems
- Domain expertise needed
- Multiple valid approaches exist
- Trade-off analysis required
Poor Questions:
- Too broad or vague
- Already have clear answer
- Domain not specified
- No context provided
4. Evolution Tracking Strategy
Track Over Time:
- Core capabilities (weekly/monthly)
- Critical metrics
- Success rates
- Performance characteristics
Look for:
- Trends (improving/degrading)
- Anomalies (sudden changes)
- Plateaus (need new approach)
- Correlations (what affects what)
Common Use Cases
Use Case 1: Custom Financial Tool
// Create specialized risk calculator
const tool = await fixiplug.dispatch('sqlite.agent.create_tool', {
name: 'var_calculator',
description: 'Calculate Value at Risk using historical simulation',
parameters: {
type: 'object',
properties: {
returns: { type: 'array', items: { type: 'number' } },
confidenceLevel: { type: 'number', minimum: 0, maximum: 1 }
},
required: ['returns', 'confidenceLevel']
},
implementation: 'python',
code: `
import numpy as np
def calculate_var(returns, confidence_level):
sorted_returns = np.sort(returns)
index = int((1 - confidence_level) * len(sorted_returns))
var = sorted_returns[index]
return {'var': float(var), 'confidence': confidence_level}
`
});
// Use the tool
const var95 = await fixiplug.dispatch(tool.hookName, {
returns: [-0.02, 0.01, -0.03, 0.02, -0.01],
confidenceLevel: 0.95
});
console.log('VaR (95%):', var95.var);
Use Case 2: Learning from Decisions
// Try approach A
const resultA = await someComplexTask();
// Record what happened
await fixiplug.dispatch('sqlite.agent.record_decision', {
decision: {
type: 'approach-selection',
context: { taskType: 'data-pipeline', dataVolume: '1TB' },
chosen: 'stream-processing',
alternatives: ['batch-processing', 'hybrid']
},
outcome: {
success: resultA.success,
metrics: {
processingTime: resultA.duration,
throughput: resultA.recordsPerSec,
cost: resultA.totalCost
},
feedback: resultA.issues || 'Worked well'
}
});
// Later, system learns: "stream-processing works well for 1TB data"
Use Case 3: Multi-Agent Collaboration
// Agent needs advice on complex problem
const advice = await fixiplug.dispatch('sqlite.agent.consult_peers', {
question: 'How to optimize this slow database query?',
domain: 'database',
context: {
queryType: 'complex-join',
tableSize: '100M rows',
currentLatency: '5s',
targetLatency: '500ms'
}
});
// Apply consensus recommendation
const approach = advice.consensus.approach;
console.log(`Using approach: ${approach}`);
Use Case 4: Self-Improvement Tracking
// Weekly capability tracking
setInterval(async () => {
const metrics = await measurePerformance();
await fixiplug.dispatch('sqlite.agent.track_evolution', {
capability: 'code-generation',
metrics: {
avgQuality: metrics.quality,
successRate: metrics.success,
avgTime: metrics.time
}
});
}, 7 * 24 * 60 * 60 * 1000); // Weekly
Performance Characteristics
- Tool Creation: ~1-3 seconds
- Decision Recording: ~100-300ms
- Peer Consultation: ~1-5 seconds (depends on peers available)
- Evolution Tracking: ~50-150ms
Error Handling
Possible errors:
ValidationError: Invalid parametersToolCreationError: Tool creation failedServiceError: SQLite service unavailableTimeoutError: Request timed outPeerConsultationError: No peers available
Example:
try {
const tool = await fixiplug.dispatch('sqlite.agent.create_tool', params);
} catch (error) {
if (error.name === 'ToolCreationError') {
console.error('Tool creation failed:', error.reason);
console.error('Suggestions:', error.suggestions);
} else if (error.name === 'ValidationError') {
console.error('Invalid parameters:', error.validationErrors);
} else {
console.error('Unexpected error:', error.message);
}
}
Advanced Features
Dynamic Tool Registration
Created tools are automatically registered as FixiPlug hooks:
const tool = await fixiplug.dispatch('sqlite.agent.create_tool', {...});
// Tool is now available at: tool.hookName
// Can be called directly
await fixiplug.dispatch(tool.hookName, params);
// Or exposed to LLMs via adapters
const adapter = new AnthropicAdapter(agent);
const tools = await adapter.getToolDefinitions();
// Includes dynamically created tools
Peer Network
Peer consultation leverages a network of specialized agents:
- Each peer has expertise domains
- Confidence scores indicate certainty
- Consensus algorithm weighs expertise + confidence
- Historical success rates influence recommendations
Learning Loop
Decision recording enables continuous learning:
- Record decisions + outcomes
- System learns patterns (what works when)
- Future recommendations improve
- Capability evolution tracked automatically
Prerequisites
- SQLite Extensions Framework installed
- Environment variable:
SQLITE_FRAMEWORK_PATH - Python 3.8+ (for Python-based tools)
- Node.js 16+ (for JavaScript-based tools)
Related Skills
sqlite-pattern-learner: Find proven patternssqlite-extension-generator: Generate optimized codesqlite-agent-context: Understand agent capabilities
Version
1.0.0 - Initial release