| name | sqlite-extension-generator |
| description | Generate optimized SQLite extensions in C, Rust, or Mojo |
| tags | database, code-generation, extensions, performance, sqlite |
| version | 1.0.0 |
SQLite Extension Generator
Purpose
This skill enables you to generate high-performance SQLite extensions automatically from natural language descriptions. It analyzes requirements, recommends optimal implementation approaches, and generates production-ready code with tests.
When to Use
Use this skill when you need to:
- Generate SQLite extensions from requirements
- Choose optimal backend language (C, Rust, Mojo)
- Analyze implementation complexity and trade-offs
- Get production-ready code with comprehensive tests
- Optimize for specific performance characteristics
Available Hooks
sqlite.extension.analyze
Analyze requirements and recommend implementation approach.
Parameters:
description(string, required): What the extension should dodomain(string, optional): Domain area (e.g., 'finance', 'analytics')performanceRequirements(object, optional): Performance constraintsmaxLatency(number): Maximum acceptable latency (ms)throughput(number): Required throughput (ops/sec)memoryLimit(number): Memory limit (MB)
Returns:
analysis(object): Detailed requirement analysisrecommendations(array): Recommended approachescomplexity(string): Estimated complexity ('low', 'medium', 'high')
Example:
const analysis = await fixiplug.dispatch('sqlite.extension.analyze', {
description: 'Real-time streaming aggregation with rolling windows',
domain: 'analytics',
performanceRequirements: {
maxLatency: 1, // 1ms max
throughput: 10000, // 10k ops/sec
memoryLimit: 100 // 100MB
}
});
console.log(analysis.analysis);
// {
// requirementType: 'streaming-aggregation',
// estimatedComplexity: 'high',
// keyChallenge: 'Maintaining rolling window state efficiently',
// suggestedApproaches: ['ring-buffer', 'sliding-window']
// }
console.log(analysis.recommendations);
// [
// {
// backend: 'mojo',
// confidence: 0.95,
// reasoning: 'Best for sub-millisecond latency with high throughput',
// pros: ['Ultra-low latency', 'Zero-copy operations', 'SIMD support'],
// cons: ['Newer ecosystem', 'Limited libraries']
// },
// {
// backend: 'rust',
// confidence: 0.88,
// reasoning: 'Excellent balance of performance and safety',
// pros: ['Memory safety', 'Rich ecosystem', 'Mature tooling'],
// cons: ['Slightly higher latency than Mojo']
// }
// ]
sqlite.extension.recommend_path
Get recommended implementation path for requirements.
Parameters:
requirements(object, required): Implementation requirementsdescription(string): What to buildperformanceLevel(string): 'speed', 'balanced', or 'size'
constraints(object, optional): Additional constraintsteamExperience(array): Languages team knowsdeploymentTarget(string): Target platform
Returns:
path(object): Recommended implementation pathsteps(array): Implementation stepsestimatedEffort(string): Effort estimate
Example:
const path = await fixiplug.dispatch('sqlite.extension.recommend_path', {
requirements: {
description: 'Customer lifetime value calculation',
performanceLevel: 'balanced'
},
constraints: {
teamExperience: ['python', 'javascript'],
deploymentTarget: 'linux-x64'
}
});
console.log(path.path);
// {
// backend: 'rust',
// reasoning: 'Team can learn Rust easily from Python/JS, balanced performance',
// learningCurve: 'moderate',
// timeToProduction: '2-3 weeks'
// }
console.log(path.steps);
// [
// 'Set up Rust development environment',
// 'Implement core CLV calculation logic',
// 'Add SQLite FFI bindings',
// 'Write unit tests and benchmarks',
// 'Build and package extension'
// ]
sqlite.extension.generate
Generate complete SQLite extension with tests and build instructions.
Parameters:
description(string, required): Extension functionality descriptionbackend(string, required): Backend language ('c', 'rust', 'mojo')performanceLevel(string, optional): Optimization level ('speed', 'balanced', 'size', default: 'balanced')includeTests(boolean, optional): Include test suite (default: true)includeBenchmarks(boolean, optional): Include benchmarks (default: true)metadata(object, optional): Additional metadata
Returns:
code(string): Extension source codetests(string): Test suite codebenchmarks(string): Benchmark codebuildInstructions(string): How to buildusage(string): Usage examplesmetadata(object): Generation metadata
Example:
const extension = await fixiplug.dispatch('sqlite.extension.generate', {
description: 'Calculate portfolio Sharpe ratio with configurable risk-free rate',
backend: 'rust',
performanceLevel: 'speed',
includeTests: true,
includeBenchmarks: true,
metadata: {
author: 'trading-team',
version: '1.0.0'
}
});
console.log('Generated code length:', extension.code.length);
console.log('Test coverage:', extension.metadata.testCoverage);
// Save to files
import fs from 'fs';
fs.writeFileSync('sharpe_ratio.rs', extension.code);
fs.writeFileSync('tests.rs', extension.tests);
fs.writeFileSync('BUILD.md', extension.buildInstructions);
Example Output Structure:
{
code: `
use rusqlite::functions::FunctionContext;
pub fn sharpe_ratio(ctx: &FunctionContext) -> rusqlite::Result<f64> {
let returns: Vec<f64> = ctx.get(0)?;
let risk_free_rate: f64 = ctx.get(1)?;
// ... implementation
}
`,
tests: `
#[test]
fn test_sharpe_ratio_positive() {
// ... tests
}
`,
benchmarks: `
#[bench]
fn bench_sharpe_ratio(b: &mut Bencher) {
// ... benchmarks
}
`,
buildInstructions: "# Building\n\n1. Install Rust...\n2. cargo build --release...",
usage: "-- SQL Usage\nSELECT sharpe_ratio(returns, 0.02) FROM portfolio;",
metadata: {
backend: 'rust',
performanceLevel: 'speed',
estimatedPerformance: '< 1ms for 1000 data points',
testCoverage: '95%',
linesOfCode: 247,
generatedAt: '2025-11-20T10:30:00Z'
}
}
sqlite.extension.quick_generate
Quick generation from description (uses smart defaults).
Parameters:
description(string, required): What to buildbackend(string, optional): Backend language (auto-selected if omitted)
Returns:
- Same as
sqlite.extension.generatebut with auto-selected options
Example:
// Simplest usage - let it choose everything
const extension = await fixiplug.dispatch('sqlite.extension.quick_generate', {
description: 'Calculate moving average over 30-day window'
});
// Backend auto-selected based on requirements
console.log(`Generated in ${extension.metadata.backend}`);
Backend Language Guidance
When to Use C
Best for:
- Maximum portability
- Minimal dependencies
- Integrating with existing C code
- Platforms where Rust/Mojo unavailable
Characteristics:
- Latency: Low (~1-5ms)
- Memory safety: Manual
- Ecosystem: Mature, stable
- Learning curve: Moderate
When to Use Rust
Best for:
- Production systems requiring safety
- Complex logic with many edge cases
- Teams familiar with modern languages
- Long-term maintenance
Characteristics:
- Latency: Very low (~0.5-2ms)
- Memory safety: Guaranteed
- Ecosystem: Growing rapidly
- Learning curve: Moderate-High
When to Use Mojo
Best for:
- Ultra-low latency requirements (<1ms)
- High-throughput streaming data
- SIMD-heavy computations
- Cutting-edge performance
Characteristics:
- Latency: Ultra-low (~0.1-0.5ms)
- Memory safety: High
- Ecosystem: Emerging
- Learning curve: Moderate (if you know Python)
Best Practices
Start with Analysis
- Always run
sqlite.extension.analyzefirst - Review recommendations before generating
- Consider team expertise and constraints
- Always run
Choose Appropriate Performance Level
speed: Maximum performance, larger binarybalanced: Good performance, reasonable size (recommended)size: Minimal binary size, acceptable performance
Always Include Tests
- Set
includeTests: true(default) - Review and extend generated tests
- Add domain-specific test cases
- Set
Review Generated Code
- Generated code is production-quality but review it
- Customize for your specific use case
- Add domain-specific validation
Benchmark Before Deploying
- Use generated benchmarks
- Test with realistic data volumes
- Measure actual latency in your environment
Performance Characteristics
Generation Speed
- Analysis: ~500ms
- Code generation: ~2-5 seconds
- Full suite (code + tests + benchmarks): ~5-10 seconds
Generated Extension Performance
| Backend | Typical Latency | Throughput | Binary Size |
|---|---|---|---|
| C | 1-5ms | 1k-10k/s | 50-200 KB |
| Rust | 0.5-2ms | 5k-50k/s | 200-500 KB |
| Mojo | 0.1-0.5ms | 50k-500k/s | 100-300 KB |
Note: Actual performance depends on extension complexity
Common Use Cases
Use Case 1: Financial Calculations
// Generate Sharpe ratio calculator
const extension = await fixiplug.dispatch('sqlite.extension.generate', {
description: 'Sharpe ratio calculation for portfolio performance',
backend: 'rust',
performanceLevel: 'speed',
includeTests: true
});
// Deploy to database
// ... save code and build
Use Case 2: Analytics Aggregations
// Generate custom aggregation function
const extension = await fixiplug.dispatch('sqlite.extension.generate', {
description: 'Custom percentile aggregation with interpolation',
backend: 'mojo',
performanceLevel: 'speed',
includeTests: true,
includeBenchmarks: true
});
Use Case 3: String Processing
// Generate text processing function
const extension = await fixiplug.dispatch('sqlite.extension.quick_generate', {
description: 'Fuzzy string matching using Levenshtein distance'
});
// Auto-selects C for portability
Use Case 4: Exploration
// Analyze first to explore options
const analysis = await fixiplug.dispatch('sqlite.extension.analyze', {
description: 'Real-time fraud detection scoring',
domain: 'security',
performanceRequirements: {
maxLatency: 10,
throughput: 1000
}
});
// Review recommendations
analysis.recommendations.forEach(rec => {
console.log(`${rec.backend}: ${rec.reasoning}`);
});
// Generate based on analysis
const extension = await fixiplug.dispatch('sqlite.extension.generate', {
description: 'Real-time fraud detection scoring',
backend: analysis.recommendations[0].backend,
performanceLevel: 'speed'
});
Error Handling
Possible errors:
ValidationError: Invalid parametersGenerationError: Code generation failedServiceError: SQLite service unavailableTimeoutError: Generation exceeded timeout
Example:
try {
const extension = await fixiplug.dispatch('sqlite.extension.generate', params);
} catch (error) {
if (error.name === 'GenerationError') {
console.error('Generation failed:', error.details);
console.error('Suggestions:', error.suggestions);
} else if (error.name === 'TimeoutError') {
console.error('Generation timed out, try simplifying requirements');
} else {
console.error('Unexpected error:', error.message);
}
}
Prerequisites
- SQLite Extensions Framework installed
- Environment variable:
SQLITE_FRAMEWORK_PATH - Backend language toolchain (for building generated code):
- C: gcc or clang
- Rust: rustc + cargo
- Mojo: mojo compiler
Related Skills
sqlite-pattern-learner: Find proven patterns before generatingsqlite-agent-amplification: Create dynamic tools from extensionssqlite-agent-context: Understand agent capabilities
Version
1.0.0 - Initial release