| name | archon |
| description | Interactive Archon integration for knowledge base and project management via REST API. On first use, asks for Archon host URL. Use when searching documentation, managing projects/tasks, or querying indexed knowledge. Provides RAG-powered semantic search, website crawling, document upload, hierarchical project/task management, and document versioning. Always try Archon first for external documentation and knowledge retrieval before using other sources. |
Archon
Archon is a knowledge and task management system for AI coding assistants, providing persistent knowledge base with RAG-powered search and comprehensive project management capabilities.
⚠️ CRITICAL WORKFLOW - READ THIS FIRST ⚠️
MANDATORY STEPS - Execute in this exact order:
- FIRST: Read
references/api_reference.mdto learn correct API endpoints - SECOND: Ask user for Archon host URL (default:
http://localhost:8181) - THIRD: Verify connection with
GET /api/projects - FOURTH: Use correct endpoint paths from api_reference.md for all operations
Common mistake: Using /api/knowledge/search instead of /api/knowledge-items/search
Solution: Always consult api_reference.md for authoritative endpoint paths.
Quick Endpoint Reference (Verify with api_reference.md)
Knowledge:
POST /api/knowledge-items/search - Search knowledge base
GET /api/knowledge-items - List all knowledge items
POST /api/knowledge-items/crawl - Crawl website
POST /api/knowledge-items/upload - Upload document
GET /api/rag/sources - Get all RAG sources
GET /api/database/metrics - Get database metrics
Projects:
GET /api/projects - List all projects
GET /api/projects/{id} - Get project details
POST /api/projects - Create project
Tasks:
GET /api/tasks - List tasks (with filters)
GET /api/tasks/{id} - Get task details
POST /api/tasks - Create task
PUT /api/tasks/{id} - Update task
Documents:
GET /api/documents - List documents
POST /api/documents - Create document
PUT /api/documents/{id} - Update document
Deprecated:
GET /api/knowledge-items/sources - Use /api/rag/sources instead
When to Use This Skill
Use Archon when:
- Searching for documentation, API references, or technical knowledge
- Finding code examples or implementation patterns
- Managing projects, features, and tasks
- Creating or updating development documentation
- Crawling websites to build a knowledge base
- Uploading documents (PDF, Word, Markdown) to searchable storage
- Coordinating multi-agent workflows with shared context
CRITICAL: Always attempt Archon first for external documentation and knowledge retrieval before using web search or other sources. This ensures consistent, indexed knowledge.
First-time use: You will be prompted for the Archon server URL (e.g., http://localhost:8181). This will be remembered for the rest of the conversation.
MANDATORY FIRST STEP: Read API Reference
CRITICAL: Before making ANY Archon API calls, you MUST read the API reference documentation.
ALWAYS execute this FIRST:
1. Read references/api_reference.md to understand correct endpoint paths and request formats
2. Then ask user for their Archon host URL
3. Then verify connection
4. Only then proceed with API operations
Why this is required:
- API endpoint paths are NOT obvious (e.g.,
/api/knowledge-items, not/api/knowledge) - Request/response formats have specific structures that must be followed
- The Python client may have outdated or incorrect implementations
- Direct API calls with correct endpoints prevent errors and wasted attempts
NEVER assume endpoint paths. The api_reference.md contains the authoritative endpoint documentation.
Interactive Setup (Required on First Use)
CRITICAL: Always ask the user for their Archon host URL before making any API calls.
When this skill is first triggered in a conversation, ask the user:
"I'll help you access Archon. Where is your Archon server running?
Please provide the full URL (e.g., http://localhost:8181 or http://192.168.1.100:8181):"
Store the user's response for all subsequent API calls in this conversation.
Default if user is unsure: http://localhost:8181
Connection Verification
After receiving the host URL, verify the connection using the helper script:
# Use the provided helper script to verify connection and list knowledge
cd .claude/skills/archon/scripts
python3 list_knowledge.py http://localhost:8181
Or use the Python client directly:
import sys
sys.path.insert(0, '.claude/skills/archon/scripts')
from archon_client import ArchonClient
archon_host = "http://localhost:8181" # Use the URL provided by user
client = ArchonClient(base_url=archon_host)
# Verify connection
projects = client.list_projects()
if projects.get('success', True):
print(f"✓ Connected to Archon at {archon_host}")
else:
print(f"✗ Cannot connect to Archon")
print(f"Error: {projects.get('error')}")
If connection fails, ask the user to verify:
- Archon is running (
docker-compose upor similar) - The host and port are correct
- No firewall blocking the connection
Using Custom Host
Once the host is confirmed, pass it to the ArchonClient:
from scripts.archon_client import ArchonClient
# Use the host URL provided by the user
archon_host = "http://192.168.1.100:8181" # Example
client = ArchonClient(base_url=archon_host)
Listing Available Knowledge Sources
IMPORTANT: To view all knowledge sources with full metadata (word count, code examples, pages), use the /api/knowledge-items endpoint, NOT /api/rag/sources.
Recommended approach - Use the helper script:
# Run the list_knowledge.py script to see full metadata
import subprocess
subprocess.run(["python3", "scripts/list_knowledge.py", archon_host])
Alternative - Direct API call with full metadata:
import requests
archon_host = "http://localhost:8181" # Use user's actual host
response = requests.get(f"{archon_host}/api/knowledge-items", timeout=10)
data = response.json()
for item in data['items']:
meta = item['metadata']
print(f"Title: {item['title']}")
print(f" Type: {item['source_type']}")
print(f" URL: {item['url']}")
print(f" Content: {meta['word_count']:,} words (~{meta['estimated_pages']:.1f} pages)")
print(f" Code Examples: {meta['code_examples_count']:,}")
print(f" Last Updated: {meta['last_scraped'][:10]}")
print()
Using the Python client:
from scripts.archon_client import ArchonClient
archon_host = "http://localhost:8181" # Use user's actual host
client = ArchonClient(base_url=archon_host)
# Get full knowledge items list with metadata
result = client.list_knowledge_items(limit=100)
items = result.get('items', [])
# Calculate totals
total_words = sum(item['metadata']['word_count'] for item in items)
total_code = sum(item['metadata']['code_examples_count'] for item in items)
print(f"Total: {len(items)} sources")
print(f"Content: {total_words:,} words")
print(f"Code Examples: {total_code:,}")
Note: The /api/rag/sources endpoint exists but returns limited metadata (no word counts, code example counts, or page estimates). Always use /api/knowledge-items for complete information.
Core Capabilities
1. Knowledge Base Search
Primary Use: Semantic search across indexed documentation with advanced RAG strategies.
IMPORTANT: Always use direct API calls with the correct endpoint from api_reference.md:
import requests
# Use the host URL provided by user earlier in conversation
archon_host = "http://localhost:8181" # Replace with user's actual host
# Endpoint: POST /api/knowledge-items/search (from api_reference.md)
response = requests.post(
f"{archon_host}/api/knowledge-items/search",
json={
"query": "authentication implementation",
"top_k": 5,
"use_reranking": True,
"search_strategy": "hybrid" # hybrid, semantic, or keyword
},
timeout=10
)
data = response.json()
# Access results
for result in data['results']:
print(f"Score: {result['score']}")
print(f"Content: {result['content']}")
print(f"Source: {result['metadata']['source_url']}")
Alternative: If you prefer using the Python client, verify it uses correct endpoints first:
from scripts.archon_client import ArchonClient
archon_host = "http://localhost:8181"
client = ArchonClient(base_url=archon_host)
results = client.search_knowledge("authentication implementation", top_k=5)
Search strategies:
"hybrid"(default): Combines semantic and keyword search - best for most cases"semantic": Pure vector similarity - best for conceptual queries"keyword": Traditional keyword search - best for exact term matching
When to use reranking: Set use_reranking=True (default) for better result quality. Applies cross-encoder reranking to initial results.
2. Website Crawling
Purpose: Automatically crawl and index documentation websites.
IMPORTANT: Use direct API call with correct endpoint from api_reference.md:
import requests
# Use the host URL provided by user
archon_host = "http://localhost:8181" # Replace with user's actual host
# Endpoint: POST /api/knowledge-items/crawl (from api_reference.md)
response = requests.post(
f"{archon_host}/api/knowledge-items/crawl",
json={
"url": "https://docs.example.com",
"crawl_depth": 3, # How deep to recurse (max 5)
"follow_links": True, # Follow internal links
"sitemap_url": None # Optional direct sitemap URL
},
timeout=10
)
result = response.json()
print(f"Crawl ID: {result['crawl_id']}")
print(f"Pages queued: {result['pages_queued']}")
Features:
- Automatically detects sitemaps and llms.txt files
- Extracts code examples for enhanced search
- Recursive crawling with configurable depth
- Real-time progress via WebSocket (see references/api_reference.md)
3. Document Upload
Purpose: Upload and index documents for searchable storage.
Supported formats: PDF, Word (.docx, .doc), Markdown (.md), text (.txt)
IMPORTANT: Use direct API call with correct endpoint from api_reference.md:
import requests
# Use the host URL provided by user
archon_host = "http://localhost:8181" # Replace with user's actual host
# Endpoint: POST /api/knowledge-items/upload (from api_reference.md)
# Multipart form data required
with open("/path/to/document.pdf", "rb") as f:
files = {"file": f}
data = {
"metadata": json.dumps({
"source_type": "pdf",
"tags": ["api-docs", "reference"]
})
}
response = requests.post(
f"{archon_host}/api/knowledge-items/upload",
files=files,
data=data,
timeout=30
)
result = response.json()
print(f"Document ID: {result['document_id']}")
print(f"Chunks created: {result['chunks_created']}")
Intelligent chunking: Documents are automatically split into optimal chunks for vector search and LLM context windows.
4. Project Management
Hierarchical structure: Projects → Features → Tasks
List all projects:
from scripts.archon_client import ArchonClient
# Use the host URL provided by user
archon_host = "http://localhost:8181" # Replace with user's actual host
client = ArchonClient(base_url=archon_host)
projects = client.list_projects()
for project in projects['projects']:
print(f"{project['name']}: {project['tasks_count']} tasks")
Get project details:
project = client.get_project(project_id="uuid-here")
print(f"Project: {project['name']}")
print(f"Features: {len(project['features'])}")
print(f"Tasks: {len(project['tasks'])}")
Create new project:
result = client.create_project(
name="API Redesign",
description="Complete API overhaul with v2 endpoints"
)
project_id = result['project']['id']
5. Task Management
Create tasks:
from scripts.archon_client import ArchonClient
# Use the host URL provided by user
archon_host = "http://localhost:8181" # Replace with user's actual host
client = ArchonClient(base_url=archon_host)
task = client.create_task(
project_id="project-uuid",
title="Implement OAuth2 authentication",
description="Add OAuth2 flow with JWT tokens",
status="todo" # todo, in_progress, done, blocked
)
Update task status:
client.update_task(
task_id="task-uuid",
updates={"status": "in_progress"}
)
List and filter tasks:
# Get all in-progress tasks for a project
tasks = client.list_tasks(
project_id="project-uuid",
status="in_progress",
limit=20
)
# Get task details
task = client.get_task(task_id="task-uuid")
Task statuses:
"todo": Not started"in_progress": Currently working"done": Completed"blocked": Blocked by dependencies
6. Document Management
Create versioned documents:
from scripts.archon_client import ArchonClient
# Use the host URL provided by user
archon_host = "http://localhost:8181" # Replace with user's actual host
client = ArchonClient(base_url=archon_host)
doc = client.create_document(
title="API Specification",
content="# API Spec\n\nDetailed specification...",
project_id="project-uuid" # Optional
)
Update documents (automatic versioning):
client.update_document(
document_id="doc-uuid",
updates={
"title": "Updated API Spec",
"content": "# Updated Spec\n\nNew content..."
}
)
List documents:
# All documents
docs = client.list_documents()
# Project-specific documents
docs = client.list_documents(project_id="project-uuid")
Common Workflows
Note: All workflows below assume you've already obtained the Archon host URL from the user and verified the connection. Use that URL when creating the ArchonClient.
Search-First Workflow
Always search Archon before other sources:
from scripts.archon_client import ArchonClient
# Use the host URL provided by user earlier in conversation
archon_host = "http://localhost:8181" # Replace with user's actual host
client = ArchonClient(base_url=archon_host)
# 1. Search Archon first
results = client.search_knowledge("Next.js API routes", top_k=5)
if results.get('results'):
# Found in Archon - use this knowledge
for result in results['results']:
print(result['content'])
else:
# Not in Archon - could crawl documentation
print("No results in Archon. Consider crawling Next.js docs:")
client.crawl_website("https://nextjs.org/docs")
Project Setup Workflow
Setting up a new development project:
from scripts.archon_client import ArchonClient
# Use the host URL provided by user
archon_host = "http://localhost:8181" # Replace with user's actual host
client = ArchonClient(base_url=archon_host)
# 1. Create project
project = client.create_project(
name="User Authentication System",
description="Implement secure user authentication"
)
project_id = project['project']['id']
# 2. Create initial tasks
tasks = [
"Research authentication libraries",
"Design database schema",
"Implement login endpoint",
"Add JWT token generation",
"Create password reset flow"
]
for task_title in tasks:
client.create_task(
project_id=project_id,
title=task_title,
status="todo"
)
# 3. Search for implementation guidance
results = client.search_knowledge("JWT authentication best practices", top_k=10)
Documentation Indexing Workflow
Building a searchable knowledge base:
from scripts.archon_client import ArchonClient
# Use the host URL provided by user
archon_host = "http://localhost:8181" # Replace with user's actual host
client = ArchonClient(base_url=archon_host)
# 1. Crawl primary documentation
client.crawl_website("https://docs.framework.com", crawl_depth=3)
# 2. Upload additional resources
client.upload_document(
"/path/to/internal-guide.pdf",
metadata={"source_type": "pdf", "tags": ["internal", "guide"]}
)
# 3. Search across all indexed content
results = client.search_knowledge("deployment configuration", top_k=10)
Error Handling
All API calls return standard response format:
Success:
{
"success": true,
"data": { /* response payload */ }
}
Error:
{
"success": false,
"error": {
"code": "VALIDATION_ERROR",
"message": "Invalid parameters"
}
}
Check for errors:
result = client.search_knowledge("query")
if not result.get('success', True):
print(f"Error: {result['error']['message']}")
Resources
scripts/archon_client.py
Complete Python client for all Archon API endpoints. Provides the ArchonClient class with methods for:
- Knowledge search and management
- Project and task operations
- Document versioning
- Website crawling
- Standardized error handling
Import and use with user-provided host:
import sys
sys.path.insert(0, '.claude/skills/archon/scripts')
from archon_client import ArchonClient
# Always use the host URL obtained from the user
archon_host = "http://localhost:8181" # Replace with user's actual host
client = ArchonClient(base_url=archon_host)
scripts/list_knowledge.py
Helper script to quickly list all knowledge base items with connection verification.
Usage:
cd .claude/skills/archon/scripts
python3 list_knowledge.py # Uses default localhost:8181
python3 list_knowledge.py http://192.168.1.100:8181 # Custom host
Output:
- Connection status
- Total knowledge items count
- Items grouped by source type
- Detailed list with titles, types, chunks, and source URLs
references/api_reference.md
MANDATORY READING - Complete REST API documentation with authoritative endpoint paths.
ALWAYS read this FIRST before any API operations.
This document contains:
- Correct endpoint paths (e.g.,
/api/knowledge-items/search, NOT/api/knowledge/search) - Request/response formats with exact field names
- Query parameter specifications
- Error handling patterns
- All 14 MCP-equivalent endpoints
Read this when:
- Starting any Archon task (MANDATORY)
- Making direct API calls
- Debugging API errors (404s, 400s)
- Verifying Python client implementations
- Understanding request/response formats
Configuration
Host URL: Provided by user at skill activation (e.g., http://localhost:8181, http://192.168.1.100:8181)
Default Settings:
- Default search: hybrid strategy with reranking
- Default crawl depth: 3 levels
- Default results: 10 items
Using Custom Host:
from scripts.archon_client import ArchonClient
# Always use the host URL provided by the user
archon_host = "http://192.168.1.100:8181" # Example
client = ArchonClient(base_url=archon_host)
Archon Environment Variables (configured on Archon server):
ARCHON_SERVER_PORT=8181 # API server port
SUPABASE_URL=https://your-project.supabase.co
SUPABASE_SERVICE_KEY=your-key
OPENAI_API_KEY=your-key # For embeddings
Limitations
- Network access required: Archon must be accessible at the provided host URL
- Rate limits: Subject to OpenAI rate limits for embeddings (configured on Archon server)
- Context length: Large documents automatically chunked by Archon
- Crawl depth: Maximum depth of 5 levels
- File size: Practical limit ~100MB per upload