Claude Code Plugins

Community-maintained marketplace

Feedback

prompt-executor

@cruzanstx/daplug
2
0

Execute prompts from ./prompts/ directory with various AI models. Use when user asks to run a prompt, execute a task, delegate work to an AI model, run prompts in worktrees/tmux, or run prompts with verification loops.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name prompt-executor
description Execute prompts from ./prompts/ directory with various AI models. Use when user asks to run a prompt, execute a task, delegate work to an AI model, run prompts in worktrees/tmux, or run prompts with verification loops.
allowed-tools Bash(git:*), Bash(mkdir:*), Bash(cp:*), Bash(rm:*), Bash(python3 ~/.claude/plugins/cache/daplug/daplug/*/skills/prompt-executor/scripts/executor.py:*), Bash(codex:*), Bash(gemini:*), Bash(tmux:*), Bash(cat:*), Bash(pgrep:*), Bash(REPO_ROOT=:*), Bash(REPO_NAME=:*), Bash(WORKTREE_PATH=:*), Bash(WORKTREES_DIR=:*), Bash(BRANCH_NAME=:*), Bash(TIMESTAMP=:*), Bash(\:*), Read, Edit, Write, Task, Glob, Grep

Prompt Executor

Auto-Approval Setup

If the user has to manually confirm the executor bash command, suggest they add this rule to ~/.claude/settings.json under permissions.allow:

"Bash(PLUGIN_ROOT=$(jq -r '.plugins.\"daplug@cruzanstx\"[0].installPath' ~/.claude/plugins/installed_plugins.json):*)"

Quick command to add it:

# Add auto-approval rule for prompt executor
jq '.permissions.allow += ["Bash(PLUGIN_ROOT=$(jq -r '"'"'.plugins.\"daplug@cruzanstx\"[0].installPath'"'"' ~/.claude/plugins/installed_plugins.json):*)"]' ~/.claude/settings.json > /tmp/settings.json && mv /tmp/settings.json ~/.claude/settings.json

Execute prompts from ./prompts/ directory using various AI models (Claude, Codex, Gemini, ZAI, etc).

When to Use This Skill

  • User says "run prompt 123" or "execute prompt 123"
  • User says "run that prompt with codex/gemini/zai"
  • User wants to "run a prompt in a worktree"
  • User wants to "run prompts in parallel"
  • User asks to "delegate this to codex/gemini"
  • User wants to "run with verification loop" or "keep retrying until complete"
  • User asks to "check loop status" for a running prompt

Executor Script

IMPORTANT: Get the executor path from Claude's installed plugins manifest:

PLUGIN_ROOT=$(jq -r '.plugins."daplug@cruzanstx"[0].installPath' ~/.claude/plugins/installed_plugins.json)
EXECUTOR="$PLUGIN_ROOT/skills/prompt-executor/scripts/executor.py"
python3 "$EXECUTOR" [prompts...] [options]

Options:

  • --model, -m: claude, codex, codex-high, codex-xhigh, gpt52, gpt52-high, gpt52-xhigh, gemini, zai, local, qwen, devstral
  • --cwd, -c: Working directory for execution
  • --run, -r: Actually run the CLI (default: just return info)
  • --info-only, -i: Only return prompt info, no CLI details
  • --worktree, -w: Create isolated git worktree for execution
  • --base-branch, -b: Base branch for worktree (default: main)
  • --on-conflict: How to handle existing worktree (error|remove|reuse|increment)
  • --loop, -l: Enable iterative verification loop until completion
  • --max-iterations: Max loop iterations before giving up (default: 3)
  • --completion-marker: Text pattern signaling completion (default: VERIFICATION_COMPLETE)
  • --loop-status: Check status of an existing verification loop

Output: JSON with prompt content, CLI command, log path, worktree info, and loop state if enabled

Execution Flows

Direct Execution (default)

# Get executor path from installed plugins manifest
PLUGIN_ROOT=$(jq -r '.plugins."daplug@cruzanstx"[0].installPath' ~/.claude/plugins/installed_plugins.json)
EXECUTOR="$PLUGIN_ROOT/skills/prompt-executor/scripts/executor.py"

# Get prompt info
python3 "$EXECUTOR" 123 --model codex

# Run in current directory
python3 "$EXECUTOR" 123 --model codex --run

With Worktree (built-in)

Single command creates worktree, copies TASK.md, and optionally runs:

# Create worktree and get info
python3 "$EXECUTOR" 123 --worktree --model codex

# Create worktree and run immediately
python3 "$EXECUTOR" 123 --worktree --model codex --run

# Use different base branch
python3 "$EXECUTOR" 123 --worktree --base-branch develop --model codex

The worktree directory is read from worktree_dir in <daplug_config> within CLAUDE.md (via config-reader), or defaults to ../worktrees/.

With tmux (use tmux-manager skill)

  1. Get CLI command from executor:
python3 "$EXECUTOR" 123 --model codex
# Returns: {"cli_command": ["codex", "exec", "--full-auto"], "content": "...", "log": "..."}
  1. Create tmux session using tmux-manager patterns:
SESSION_NAME="prompt-123-$(date +%Y%m%d-%H%M%S)"
tmux new-session -d -s "$SESSION_NAME" -c "$WORKTREE_PATH"
  1. Send command to session:
tmux send-keys -t "$SESSION_NAME" "codex exec --full-auto '...' 2>&1 | tee $LOG_FILE" C-m

With Verification Loop

Run prompts with automatic retries until the task is verified complete:

# Run with verification loop (background, default 3 iterations)
python3 "$EXECUTOR" 123 --model codex --run --loop

# With custom max iterations
python3 "$EXECUTOR" 123 --model codex --run --loop --max-iterations 5

# With custom completion marker
python3 "$EXECUTOR" 123 --model codex --run --loop --completion-marker "TASK_DONE"

# Worktree + loop combo
python3 "$EXECUTOR" 123 --model codex --worktree --run --loop

Output includes:

{
  "execution": {
    "status": "loop_running",
    "pid": 12345,
    "loop_log": "~/.claude/cli-logs/codex-123-loop-20251229-120000.log",
    "state_file": "~/.claude/loop-state/123.json",
    "max_iterations": 3,
    "completion_marker": "VERIFICATION_COMPLETE"
  }
}

Log paths follow cli_logs_dir from <daplug_config> if configured (default ~/.claude/cli-logs/).

Check Loop Status

# Check specific prompt's loop
python3 "$EXECUTOR" 123 --loop-status

# List all active loops
python3 "$EXECUTOR" --loop-status

Model Reference

Model CLI Description
claude (Task subagent) Claude Sonnet via subagent
codex codex exec --full-auto OpenAI Codex (gpt-5.2-codex)
codex-high codex exec --full-auto -c model_reasoning_effort="high" Codex with high reasoning
codex-xhigh codex exec --full-auto -c model_reasoning_effort="xhigh" Codex with xhigh reasoning
gpt52 codex exec --full-auto -m gpt-5.2 GPT-5.2 for planning/research
gpt52-high codex exec --full-auto -m gpt-5.2 -c model_reasoning_effort="high" GPT-5.2 with high reasoning
gpt52-xhigh codex exec --full-auto -m gpt-5.2 -c model_reasoning_effort="xhigh" GPT-5.2 with xhigh reasoning
gemini gemini -y Google Gemini 2.5 Pro
zai codex exec --profile zai Z.AI GLM-4.7
local/qwen codex exec --profile local Local qwen model
devstral codex exec --profile local-devstral Local devstral model

Output Display

After executing the prompt, display a clear summary that includes the prompt title from the JSON output:

## Execution Started

**Prompt 295**: Add transcript success monitoring with retry logic

| Field | Value |
|-------|-------|
| Model | codex (gpt-5.2-codex) |
| Status | 🟢 Running (PID 12345) |
| Loop | Max 3 iterations |

Worktree: `.worktrees/repo-prompt-295-20251229-181852/`
Branch: `prompt/295-transcript-success-monitoring`

Important: Always include the title field from the executor JSON output. This tells the user what the prompt actually does, not just its number.

Monitoring Pattern

After launching, spawn a haiku monitor subagent:

Task(
  subagent_type: "general-purpose",
  model: "haiku",
  run_in_background: true,
  prompt: """
    Monitor prompt execution:
    - Log file: {log_path}
    - PID: {pid}
    - {If tmux: Session: {session}}
    - {If worktree: Worktree: {worktree_path}}

    IMPORTANT: Use Bash tool for all file operations (not Read tool):

    Every 30 seconds, check status using Bash:
    ```bash
    # Check if process is running
    ps -p {pid} > /dev/null 2>&1 && echo "RUNNING" || echo "STOPPED"

    # Tail last 20 lines of log
    tail -20 "{log_path}"
    ```

    On completion (process ended):
    ```bash
    # Get summary from log
    tail -50 "{log_path}"

    # If worktree, show git status
    cd "{worktree_path}" && git log --oneline -5 && git diff --stat
    ```
    - Summarize what was done
    - Report final status
  """
)

Cleanup

For worktree executions, after completion:

# Remove TASK.md before merge
rm "$WORKTREE_PATH/TASK.md"

# Merge if requested
git checkout main
git merge --no-ff "$BRANCH_NAME" -m "Merge prompt: $BRANCH_NAME"

# Cleanup
git worktree remove "$WORKTREE_PATH"
git branch -D "$BRANCH_NAME"
git worktree prune