| name | episode-log-steps |
| description | Log execution steps during episode execution for detailed tracking and learning. Use when recording tool usage, decision points, errors, or milestones during task execution. |
Episode Log Steps
Log execution steps during episode execution for detailed tracking and learning.
Purpose
Record individual execution steps to build a complete picture of task execution for pattern learning.
When to Log Steps
- Tool usage: Each time a significant tool is used
- Decision points: When making architectural or implementation choices
- Error handling: When encountering and resolving errors
- Milestones: Key progress points (test passing, module complete)
Step Structure
pub struct ExecutionStep {
pub tool: String, // Tool/action used
pub action: String, // Description of action
pub latency_ms: u64, // Time taken
pub tokens: Option<u32>, // Tokens used (if applicable)
pub success: bool, // Whether step succeeded
pub observation: String, // Outcome/observations
}
Logging Guidelines
1. Batch When Appropriate
- Don't log every tiny operation
- Batch related steps when many occur quickly
- Log significant operations individually
2. Include Context
- Tool: cargo, rustfmt, clippy, git, etc.
- Action: Specific command or operation
- Observation: Result, output summary, or error
3. Track Performance
- Record latency for slow operations
- Note token usage for LLM calls
- Mark success/failure clearly
Examples
Build Step
let step = ExecutionStep {
tool: "cargo".to_string(),
action: "build --all".to_string(),
latency_ms: 12500,
tokens: None,
success: true,
observation: "Build successful, 0 warnings".to_string(),
};
memory.log_step(episode_id, step).await?;
Test Step
let step = ExecutionStep {
tool: "cargo".to_string(),
action: "test --test integration_test".to_string(),
latency_ms: 3200,
tokens: None,
success: false,
observation: "2 tests failed: test_batch_insert, test_concurrent_writes".to_string(),
};
memory.log_step(episode_id, step).await?;
Code Generation Step
let step = ExecutionStep {
tool: "claude".to_string(),
action: "generate async batch implementation".to_string(),
latency_ms: 4500,
tokens: Some(2800),
success: true,
observation: "Generated batch.rs with async Tokio patterns".to_string(),
};
memory.log_step(episode_id, step).await?;
Error Resolution Step
let step = ExecutionStep {
tool: "clippy".to_string(),
action: "check --all".to_string(),
latency_ms: 1500,
tokens: None,
success: true,
observation: "Fixed 3 warnings: unused imports, unnecessary clone".to_string(),
};
memory.log_step(episode_id, step).await?;
Batching Strategy
When multiple related steps occur in a burst (e.g., fixing multiple test failures):
let step = ExecutionStep {
tool: "cargo".to_string(),
action: "fix 5 test failures in batch_test.rs".to_string(),
latency_ms: 18000,
tokens: Some(3500),
success: true,
observation: "Fixed: test_batch_insert (await missing), test_concurrent (lock order), test_timeout (semaphore added)".to_string(),
};
memory.log_step(episode_id, step).await?;
Notes
- Steps are stored as JSON array in episode record
- Use clear, actionable observations
- Include error messages when relevant
- Keep observation strings concise but informative