Claude Code Plugins

Community-maintained marketplace

Feedback

Master Archon MCP for strategic project management, task tracking, and knowledge base operations. The strategic layer (WHAT/WHEN) that coordinates with Skills (HOW). Use when managing projects, tracking tasks, querying knowledge bases, or implementing the Archon+Skills two-layer architecture.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name Archon Manager
description Master Archon MCP for strategic project management, task tracking, and knowledge base operations. The strategic layer (WHAT/WHEN) that coordinates with Skills (HOW). Use when managing projects, tracking tasks, querying knowledge bases, or implementing the Archon+Skills two-layer architecture.
version 1.0.0
category project-management
tags project-management, knowledge-management, task-tracking, rag, strategic-planning
related_skills rag-implementer, knowledge-base-manager, mvp-builder, product-strategist, multi-agent-architect
triggers archon-manager, archon manager, archon, project management mcp, task tracking
supports_mcps archon-mcp
required_tools
required_integrations supabase, openai

Archon Manager

Master Archon MCP for strategic project management and knowledge operations.

Archon is the command center for AI coding assistants, providing:

  • Strategic Layer: Project management, task tracking, priority-based workflow (WHAT/WHEN)
  • Knowledge Layer: RAG queries, web crawling, document processing, code examples
  • Integration Layer: Connects Claude Code, Cursor, Windsurf with unified context

The Two-Layer Architecture:

  • Archon (this skill) = Strategic (WHAT to build, WHEN)
  • Skills = Tactical (HOW to build well)
  • Together = Optimal outcomes

When to Use This Skill

  • Project Setup: Creating hierarchical projects with features and tasks
  • Task Management: Priority-based workflow (P0/P1/P2), status tracking
  • Knowledge Queries: RAG searches across documentation, code examples, PDFs
  • Strategic Planning: Using Archon to decide WHAT to build next
  • Two-Layer Workflow: Implementing Archon (strategic) + Skills (tactical) pattern
  • Context Preservation: Maintaining project knowledge across sessions
  • AI Coordination: Synchronizing multiple AI assistants on same project

Core Concepts

1. The Two-Layer Architecture

┌──────────────────────────────────────────────────┐
│           ARCHON MCP SERVER                      │
│           (Strategic Layer)                      │
│                                                  │
│  • Project management & task tracking           │
│  • Priority-based workflow (P0/P1/P2)          │
│  • Knowledge queries (RAG)                      │
│  • Code example search                          │
│  • Progress tracking & metrics                  │
│  • Context preservation                         │
└─────────────────┬────────────────────────────────┘
                  │
                  │ invokes when needed
                  ↓
┌──────────────────────────────────────────────────┐
│      AI-DEV-STANDARDS SKILLS                     │
│      (Tactical Layer)                            │
│                                                  │
│  • Domain-specific expertise                    │
│  • Implementation patterns                      │
│  • Quality standards                            │
│  • Best practices                               │
└──────────────────────────────────────────────────┘

Key Insight: Archon manages WHAT to build and WHEN, Skills guide HOW to build it well.

2. Hierarchical Project Structure

Project
├── Feature 1
│   ├── Task 1.1 (P0)
│   ├── Task 1.2 (P1)
│   └── Task 1.3 (P2)
├── Feature 2
│   ├── Task 2.1 (P0)
│   └── Task 2.2 (P1)
└── Knowledge Base
    ├── Web pages
    ├── PDFs
    ├── Code examples
    └── Documentation

3. Priority-Based Workflow

  • P0 (Critical): Must have for core value prop, blocks everything
  • P1 (High Value): Important but can wait, high impact
  • P2 (Nice to Have): Enhancement, low priority

4. Knowledge Management

  • Web Crawling: Automatic sitemap detection, intelligent scraping
  • Document Processing: PDFs with intelligent chunking
  • Code Examples: Extract from documentation
  • Semantic Search: Vector-based RAG with embeddings
  • Source Organization: Tags, categories, versions

6-Phase Archon Implementation

Phase 1: Setup & Configuration

Goal: Install and configure Archon for your project

1.1 Prerequisites

# Required
- Docker Desktop (running)
- Node.js 18+
- Supabase account (cloud: https://supabase.com or local)
- LLM API key (OpenAI, Gemini, or Ollama)

1.2 Installation

# Clone Archon
git clone https://github.com/coleam00/Archon.git
cd Archon

# Create .env file
cp .env.example .env

# Edit .env with your credentials
SUPABASE_URL=your-supabase-url
SUPABASE_ANON_KEY=your-anon-key
SUPABASE_SERVICE_ROLE_KEY=your-service-role-key
OPENAI_API_KEY=your-openai-key  # or GEMINI_API_KEY, OLLAMA_URL

# Set up database (run SQL migrations in Supabase SQL Editor)
# See: database/migrations/

# Start Archon
docker compose up --build -d

# Verify running
# Frontend: http://localhost:3737
# API: http://localhost:8181
# MCP: http://localhost:8051

1.3 Connect to AI Assistant

For Claude Code (.claude/mcp-settings.json):

{
  "mcpServers": {
    "archon": {
      "command": "node",
      "args": ["/path/to/archon/mcp-server/dist/index.js"],
      "env": {
        "ARCHON_API_URL": "http://localhost:8181"
      }
    }
  }
}

For Cursor/Windsurf: Similar MCP configuration in settings

1.4 Verify Connection

// Test Archon connection
archon:list_projects()
// Should return empty list or existing projects

Phase 2: Project Creation

Goal: Set up hierarchical project structure

2.1 Create Project

// Using Archon MCP tool
archon:create_project({
  name: "My Application",
  description: "Full-stack web application for task management",
  status: "active",
  metadata: {
    tech_stack: ["Next.js", "Supabase", "TypeScript"],
    team_size: 1,
    target_launch: "2025-12-01"
  }
})

// Returns: { project_id: "uuid", name: "My Application", ... }

2.2 Add Features

// Create major features
archon:create_feature({
  project_id: "uuid",
  name: "User Authentication",
  description: "Complete auth system with email/OAuth",
  priority: "P0",
  estimated_effort: "2 days"
})

archon:create_feature({
  project_id: "uuid",
  name: "Task Management",
  description: "CRUD operations for tasks",
  priority: "P0",
  estimated_effort: "3 days"
})

archon:create_feature({
  project_id: "uuid",
  name: "Team Collaboration",
  description: "Share tasks with team members",
  priority: "P1",
  estimated_effort: "4 days"
})

2.3 Break Down Features into Tasks

// Use AI-assisted task generation
archon:generate_tasks({
  feature_id: "auth-feature-uuid",
  instructions: "Break down authentication into implementation tasks",
  use_ai: true
})

// Or create manually
archon:create_task({
  feature_id: "auth-feature-uuid",
  title: "Implement email/password signup",
  description: "Create signup form, API endpoint, database schema",
  priority: "P0",
  status: "todo",
  estimated_hours: 4,
  skills_to_use: ["api-designer", "security-engineer", "frontend-builder"]
})

Phase 3: Knowledge Base Setup

Goal: Build comprehensive knowledge base for AI queries

3.1 Add Web Documentation

// Crawl entire documentation site
archon:crawl_website({
  url: "https://nextjs.org/docs",
  max_depth: 3,
  follow_sitemap: true,
  tags: ["nextjs", "documentation"]
})

// Archon automatically:
// - Detects sitemap
// - Crawls pages
// - Extracts text
// - Chunks intelligently
// - Generates embeddings
// - Stores in vector database

3.2 Add PDF Documents

// Upload PDFs (design docs, specs, research papers)
archon:add_document({
  file_path: "/path/to/architecture-spec.pdf",
  type: "pdf",
  tags: ["architecture", "design"],
  project_id: "uuid"
})

// Archon automatically:
// - Extracts text from PDF
// - Chunks by sections/pages
// - Generates embeddings
// - Indexes for search

3.3 Add Code Examples

// Extract code examples from repos or docs
archon:extract_code_examples({
  source_url: "https://github.com/vercel/next.js/tree/canary/examples",
  tags: ["nextjs", "examples"],
  language_filter: ["typescript", "javascript"]
})

3.4 Organize Knowledge

// Tag and categorize
archon:update_source({
  source_id: "uuid",
  tags: ["authentication", "security", "best-practices"],
  category: "implementation-guides",
  version: "1.0"
})

Phase 4: The Archon+Skills Workflow

Goal: Use two-layer architecture for optimal development

4.1 Phase 1: Strategic Planning (Archon)

Goal: Understand WHAT to build and WHY

// 1. Get next priority task
const task = archon:get_next_task({
  project_id: "uuid",
  filter_by: "status",
  filter_value: "todo",
  sort_by: "priority"  // P0 first
})
// → { id: "P0-3", title: "Implement User Authentication", priority: "P0" }

// 2. Get task details
const details = archon:get_task({
  task_id: "P0-3"
})
// → Complete task info: description, requirements, dependencies

// 3. Research the domain (RAG query)
const research = archon:perform_rag_query({
  query: "JWT authentication Next.js best practices",
  project_id: "uuid",
  match_count: 5
})
// → Top 5 most relevant knowledge base entries with context

// 4. Find code examples
const examples = archon:search_code_examples({
  query: "auth middleware Next.js TypeScript",
  match_count: 3
})
// → Relevant code examples from knowledge base

// 5. Mark as doing
archon:update_task({
  task_id: "P0-3",
  updates: { status: "doing" }
})

4.2 Phase 2: Tactical Execution (Skills)

Goal: Implement with domain expertise and best practices

// 6. Identify required skills (from task.skills_to_use)
// → ["api-designer", "security-engineer", "frontend-builder"]

// 7. Invoke skills for guidance
// (AI assistant automatically invokes these skills based on context)

// 8. Implement following both:
//    - Archon research (RAG results + code examples)
//    - Skill guidance (best practices + patterns)

// 9. Build the feature

4.3 Phase 3: Quality Validation

Goal: Ensure quality before marking complete

// 10. Apply quality checks
// - Invoke testing-strategist skill
// - Invoke security-engineer skill
// - Run tests, validate security

// 11. Update task to review
archon:update_task({
  task_id: "P0-3",
  updates: { status: "review" }
})

// 12. After user validation → mark done
archon:update_task({
  task_id: "P0-3",
  updates: { status: "done" }
})

// 13. Get next task
const nextTask = archon:get_next_task({
  project_id: "uuid",
  filter_by: "status",
  filter_value: "todo"
})
// → Repeat cycle

Phase 5: Advanced Knowledge Operations

Goal: Leverage Archon's RAG capabilities

5.1 Semantic Search Patterns

// Broad research query
archon:perform_rag_query({
  query: "How to implement real-time features in Next.js",
  match_count: 10,
  similarity_threshold: 0.7
})

// Specific technical query
archon:perform_rag_query({
  query: "Next.js middleware authentication example code",
  match_count: 3,
  filter_tags: ["nextjs", "authentication", "code-example"]
})

// Architecture decision query
archon:perform_rag_query({
  query: "PostgreSQL vs MongoDB for user data",
  match_count: 5,
  filter_tags: ["database", "architecture"]
})

5.2 Context-Aware Queries

// Query within project context
archon:perform_rag_query({
  query: "How should we structure our authentication?",
  project_id: "uuid",  // Uses project's knowledge base
  match_count: 5
})

// Query specific feature context
archon:perform_rag_query({
  query: "Best practices for this feature",
  feature_id: "auth-feature-uuid",
  match_count: 3
})

5.3 Knowledge Base Versioning

// Version project documentation
archon:create_doc_version({
  project_id: "uuid",
  document_name: "Architecture Decision Record",
  content: "...",
  version: "1.0.0",
  tags: ["architecture", "decisions"]
})

// Query historical context
archon:get_doc_history({
  project_id: "uuid",
  document_name: "Architecture Decision Record"
})

Phase 6: Progress Tracking & Metrics

Goal: Monitor project health and velocity

6.1 Project Metrics

// Get project overview
archon:get_project_metrics({
  project_id: "uuid"
})
// Returns:
// {
//   total_features: 5,
//   total_tasks: 23,
//   p0_tasks: 8,
//   p1_tasks: 10,
//   p2_tasks: 5,
//   tasks_by_status: {
//     todo: 15,
//     doing: 3,
//     review: 2,
//     done: 3
//   },
//   completion_percentage: 13,
//   knowledge_base_entries: 147
// }

6.2 Velocity Tracking

// Tasks completed per week
archon:get_velocity({
  project_id: "uuid",
  time_period: "week"
})

// Burndown chart data
archon:get_burndown({
  project_id: "uuid",
  sprint_id: "sprint-1"
})

6.3 Real-Time Updates

Archon uses Socket.IO for real-time progress updates:

  • Task status changes
  • Knowledge base additions
  • Project metrics updates
  • Team collaboration events

Integration Patterns

Pattern 1: Solo Developer Workflow

// Morning routine
const nextTask = archon:get_next_task({ project_id: "uuid" })
const research = archon:perform_rag_query({
  query: nextTask.title + " implementation",
  match_count: 5
})

// Work on task (using Skills for implementation)
// ...

// End of day
archon:update_task({ task_id: nextTask.id, status: "review" })

Pattern 2: Team Collaboration

// Team lead creates project structure
archon:create_project({ name: "Team Project" })
archon:create_feature({ name: "Backend API", assigned_to: "developer-1" })
archon:create_feature({ name: "Frontend UI", assigned_to: "developer-2" })

// Each team member queries same knowledge base
archon:perform_rag_query({ query: "...", project_id: "uuid" })

// Real-time sync of task status across team

Pattern 3: Multi-AI-Assistant Setup

// Claude Code for implementation
// Cursor for refactoring
// Windsurf for testing

// All connected to same Archon instance
// Same project, same tasks, same knowledge base
// Coordinated through Archon's unified context

Archon MCP Tools Reference

Project Management

// Projects
archon:create_project({name, description, status, metadata})
archon:list_projects()
archon:get_project({project_id})
archon:update_project({project_id, updates})
archon:delete_project({project_id})

// Features
archon:create_feature({project_id, name, description, priority})
archon:list_features({project_id})
archon:update_feature({feature_id, updates})

// Tasks
archon:create_task({feature_id, title, description, priority, status})
archon:get_next_task({project_id, filter_by, sort_by})
archon:get_task({task_id})
archon:update_task({task_id, updates})
archon:list_tasks({project_id, filter_by, filter_value})
archon:generate_tasks({feature_id, instructions, use_ai})

Knowledge Management

// RAG Queries
archon:perform_rag_query({query, project_id?, match_count, similarity_threshold, filter_tags?})
archon:search_code_examples({query, match_count, language_filter?})

// Content Ingestion
archon:crawl_website({url, max_depth, follow_sitemap, tags})
archon:add_document({file_path, type, tags, project_id})
archon:extract_code_examples({source_url, tags, language_filter})

// Knowledge Base Management
archon:list_sources({project_id, filter_tags?})
archon:update_source({source_id, tags, category, version})
archon:delete_source({source_id})

Metrics & Analytics

archon:get_project_metrics({project_id})
archon:get_velocity({project_id, time_period})
archon:get_burndown({project_id, sprint_id})

Best Practices

1. Start with Clear Project Structure

// Good: Hierarchical and organized
Project: "E-commerce Platform"
├── Feature: "User Authentication" (P0)
│   ├── Task: "Implement signup" (P0)
│   ├── Task: "Implement login" (P0)
│   └── Task: "Password reset" (P1)
├── Feature: "Product Catalog" (P0)
│   ├── Task: "Product CRUD API" (P0)
│   ├── Task: "Product listing UI" (P0)
│   └── Task: "Search functionality" (P1)

// Bad: Flat, disorganized
- Task: "Build everything"
- Task: "Make it work"
- Task: "Deploy"

2. Use Priority Effectively

P0 (Critical): Must have for MVP, blocks everything

  • Core value proposition features
  • Critical bugs
  • Security vulnerabilities

P1 (High Value): Important, high impact

  • Significant enhancements
  • Important optimizations
  • Major integrations

P2 (Nice to Have): Can wait

  • Polish and refinement
  • Minor features
  • Non-critical improvements

3. Build Comprehensive Knowledge Base

// Add diverse sources
archon:crawl_website({url: "https://docs.framework.com"})
archon:add_document({file_path: "architecture-spec.pdf"})
archon:extract_code_examples({source_url: "https://github.com/..."})

// Tag consistently
tags: ["category", "technology", "type"]
// e.g., ["authentication", "nextjs", "tutorial"]

4. Use RAG Queries Strategically

// Before starting task
const research = archon:perform_rag_query({
  query: "How to implement " + task.title,
  match_count: 5
})

// During implementation (specific questions)
const answer = archon:perform_rag_query({
  query: "How to handle edge case X",
  match_count: 3
})

// Architecture decisions
const guidance = archon:perform_rag_query({
  query: "Should I use pattern A or pattern B for ...",
  match_count: 5
})

5. Maintain Task Status Discipline

todo → doing → review → done
  • todo: Not started
  • doing: Currently working on (limit to 1-3 tasks)
  • review: Ready for validation
  • done: Completed and validated

Update status immediately when changing.


Troubleshooting

Issue: Archon Not Connecting

Symptoms: MCP tools not available in AI assistant

Solutions:

  1. Check Docker containers running: docker ps
  2. Verify ports not blocked: 3737, 8181, 8051, 8052
  3. Check MCP configuration in .claude/mcp-settings.json
  4. Restart AI assistant after config changes
  5. Check Archon logs: docker logs archon-api

Issue: RAG Queries Return No Results

Symptoms: Empty results from perform_rag_query

Solutions:

  1. Verify knowledge base has content: archon:list_sources()
  2. Check embeddings generated (wait for processing)
  3. Lower similarity_threshold (default 0.7, try 0.5)
  4. Broader query terms
  5. Check source tags match filter_tags

Issue: Tasks Not Appearing

Symptoms: get_next_task returns empty

Solutions:

  1. Verify project exists: archon:list_projects()
  2. Check task status filters
  3. Ensure tasks created for correct feature/project
  4. Verify tasks not all marked "done"

Issue: Slow Performance

Symptoms: RAG queries or task operations slow

Solutions:

  1. Check Docker resource allocation
  2. Optimize knowledge base (remove duplicates)
  3. Use match_count appropriately (5-10, not 100)
  4. Consider upgrading Supabase plan (if cloud)
  5. Use local Ollama instead of API calls

Integration with ai-dev-standards

Using Archon + Skills Together

Archon provides (Strategic):

  • WHAT to build (task from priority queue)
  • WHEN to build it (P0/P1/P2 ordering)
  • Context (RAG queries, project knowledge)

Skills provide (Tactical):

  • HOW to build well (best practices, patterns)
  • Domain expertise (security, performance, etc.)
  • Quality standards (testing, validation)

Example Workflow:

// 1. Strategic (Archon)
const task = archon:get_next_task({project_id: "uuid"})
const research = archon:perform_rag_query({query: task.title})
archon:update_task({task_id: task.id, status: "doing"})

// 2. Tactical (Skills)
// AI automatically invokes: api-designer, security-engineer, frontend-builder
// Based on task.skills_to_use

// 3. Implementation
// Build following: Archon research + Skill guidance

// 4. Quality (Skills)
// AI invokes: testing-strategist, security-engineer

// 5. Complete (Archon)
archon:update_task({task_id: task.id, status: "done"})

Task-to-Skill Mapping

When creating tasks in Archon, specify skills_to_use:

archon:create_task({
  title: "Implement authentication API",
  skills_to_use: ["api-designer", "security-engineer"],
  // ...
})

This tells AI assistants which skills to invoke during implementation.


Success Metrics

You're using Archon effectively when:

  1. Clear project structure: Hierarchical, organized, prioritized
  2. Always know what's next: get_next_task guides daily work
  3. Rich knowledge base: RAG queries return relevant, useful results
  4. Visible progress: Metrics show steady completion
  5. Status discipline: Tasks flow smoothly through workflow
  6. Context preserved: Can resume project after breaks without loss
  7. Quality maintained: Two-layer workflow (Archon + Skills) produces excellent results

Quick Reference

Common Commands

// Daily workflow
archon:get_next_task({project_id})
archon:perform_rag_query({query, match_count: 5})
archon:update_task({task_id, status: "doing"})
// ... work ...
archon:update_task({task_id, status: "done"})

// Project setup
archon:create_project({name, description})
archon:create_feature({project_id, name, priority: "P0"})
archon:create_task({feature_id, title, priority: "P0"})

// Knowledge building
archon:crawl_website({url, tags})
archon:add_document({file_path, tags})

// Progress tracking
archon:get_project_metrics({project_id})
archon:list_tasks({project_id, filter_by: "status", filter_value: "done"})

Priority Guidelines

  • P0: Core features, critical bugs, security issues
  • P1: Important enhancements, optimizations, integrations
  • P2: Polish, minor features, nice-to-haves

Status Flow

todo → doing (working) → review (validate) → done (complete)

Summary

Archon is the strategic command center that:

  • Manages WHAT to build and WHEN (priority queue)
  • Provides context through RAG (knowledge base)
  • Tracks progress and metrics
  • Coordinates AI assistants

Combined with Skills (HOW to build well), Archon enables:

  • Strategic coherence (all work aligned with goals)
  • Tactical excellence (domain expertise + best practices)
  • Context preservation (no lost knowledge)
  • Quality assurance (multi-layer validation)

Key Takeaway: Use Archon for strategic planning (WHAT/WHEN), invoke Skills for implementation guidance (HOW). Together they create optimal outcomes.

For detailed integration patterns: See DOCS/ARCHON-INTEGRATION.md For complete example: See EXAMPLES/archon-workflow-example.md