| name | python-dev |
| description | Python development guidance with code quality standards, error handling, testing practices, and environment management. Use when writing, reviewing, or modifying Python code (.py files) or Jupyter notebooks (.ipynb files). |
Python Development Rules
Overview
Python development guidance focused on code quality, error handling, testing, and environment management. Apply when working with Python code or Jupyter notebooks.
When to Use This Skill
Use this skill when:
- Writing new Python code or modifying existing Python files
- Creating or updating Jupyter notebooks
- Setting up Python development environments
- Writing or updating tests
- Reviewing Python code for quality and best practices
Code Quality
Principles
- DRY (Don't Repeat Yourself): Avoid code duplication
- Composition over inheritance: Prefer composition patterns
- Pure functions when possible: Functions without side effects
- Simple solutions over clever ones: Prioritize readability and maintainability
- Design for common use cases first: Solve the primary problem before edge cases
Style & Documentation
- Type hints required: All functions must include type annotations
- snake_case naming: Use snake_case for variables, functions, and modules
- Google-style docstrings: Document functions, classes, and modules using Google-style docstrings
- Keep functions small: Single responsibility principle - one function, one purpose
- Preserve existing comments: Maintain and update existing code comments
Example
def calculate_total(items: list[dict[str, float]], tax_rate: float = 0.08) -> float:
"""Calculate total cost including tax.
Args:
items: List of items with 'price' key
tax_rate: Tax rate as decimal (default 0.08)
Returns:
Total cost including tax
Raises:
ValueError: If tax_rate is negative or items list is empty
"""
if not items:
raise ValueError("Items list cannot be empty")
if tax_rate < 0:
raise ValueError("Tax rate cannot be negative")
subtotal = sum(item['price'] for item in items)
return subtotal * (1 + tax_rate)
Error Handling & Efficiency
Error Handling
- Specific exception types: Catch specific exceptions, not bare
except - Validate inputs early: Check inputs at function entry
- No bare except: Always specify exception types
Efficiency Patterns
- f-strings: Use f-strings for string formatting
- Comprehensions: Prefer list/dict/set comprehensions over loops when appropriate
- Context managers: Use
withstatements for resource management
Example
def process_file(file_path: str) -> list[str]:
"""Process file and return lines.
Args:
file_path: Path to file
Returns:
List of non-empty lines
Raises:
FileNotFoundError: If file doesn't exist
PermissionError: If file cannot be read
"""
if not file_path:
raise ValueError("File path cannot be empty")
try:
with open(file_path, 'r', encoding='utf-8') as f:
return [line.strip() for line in f if line.strip()]
except FileNotFoundError:
raise FileNotFoundError(f"File not found: {file_path}")
except PermissionError:
raise PermissionError(f"Permission denied: {file_path}")
Testing (Critical)
Framework & Structure
- pytest only: Use pytest exclusively (no unittest)
- Test location: All tests in
./tests/directory - Test package: Include
__init__.pyin tests directory - TDD approach: Write/update tests for all new/modified code
- All tests must pass: Ensure all tests pass before task completion
Test Structure Example
project/
├── src/
│ └── my_module.py
└── tests/
├── __init__.py
└── test_my_module.py
Example Test
# tests/test_calculations.py
import pytest
from src.calculations import calculate_total
def test_calculate_total_basic():
"""Test basic total calculation."""
items = [{'price': 10.0}, {'price': 20.0}]
result = calculate_total(items, tax_rate=0.1)
assert result == 33.0
def test_calculate_total_empty_list():
"""Test error handling for empty list."""
with pytest.raises(ValueError, match="Items list cannot be empty"):
calculate_total([])
def test_calculate_total_negative_tax():
"""Test error handling for negative tax rate."""
items = [{'price': 10.0}]
with pytest.raises(ValueError, match="Tax rate cannot be negative"):
calculate_total(items, tax_rate=-0.1)
Environment Management
Dependency Management
- Use uv: Dependency management via uv
- Virtual environments: Use virtual environments (
venv) oruv - Check existing venv: Always check for existing
.venvin current or parent directories before creating new one - Activate before use: Activate
.venvbefore installing packages or executing scripts
Code Style
- Ruff: Use Ruff for code style consistency and linting
Environment Setup Example
# Check for existing .venv
if [ -d ".venv" ]; then
source .venv/bin/activate
elif [ -d "../.venv" ]; then
source ../.venv/bin/activate
else
# Create new venv or use uv
python3 -m venv .venv
source .venv/bin/activate
fi
# Install dependencies
pip install -r requirements.txt
# Or with uv
uv pip install -r requirements.txt
Python Script Execution
- Always activate virtual environment before running Python scripts
- Use
python3explicitly when not in venv - Check for
requirements.txtorpyproject.tomlfor dependencies
Best Practices Summary
- Code Quality: DRY, composition, pure functions, simple solutions
- Style: Type hints, snake_case, Google docstrings, small functions
- Errors: Specific exceptions, early validation, no bare except
- Efficiency: f-strings, comprehensions, context managers
- Testing: pytest only, TDD, tests in
./tests/, all must pass - Environment: uv or venv, check existing
.venv, activate before use, Ruff for style