| name | Video Processor |
| description | Process video files with audio extraction, format conversion (mp4, webm), and Whisper transcription. Use when user mentions video conversion, audio extraction, transcription, mp4, webm, ffmpeg, or whisper transcription. |
Video Processor
Instructions
This skill provides video processing utilities including audio extraction, format conversion, and audio transcription using FFmpeg and OpenAI's Whisper model.
Prerequisites
Required tools (must be installed in your environment):
FFmpeg: Multimedia framework for video/audio processing
# macOS brew install ffmpeg # Ubuntu/Debian apt-get install ffmpeg # Verify installation ffmpeg -versionOpenAI Whisper: Speech-to-text transcription model
# Install via pip pip install -U openai-whisper # Verify installation whisper --help
Python packages (included in script via PEP 723):
- click (CLI framework)
- ffmpeg-python (Python wrapper for FFmpeg)
Workflow
Use the scripts/video_processor.py script for all video processing tasks. The script provides a simple CLI with the following commands:
1. Extract Audio from Video
Extract the audio track from a video file:
uv run .claude/skills/video-processor/scripts/video_processor.py extract-audio input.mp4 output.wav
Options:
--format: Output audio format (default: wav). Supports: wav, mp3, aac, flac- Output is suitable for transcription or standalone audio use
2. Convert Video to MP4
Convert any video file to MP4 format:
uv run .claude/skills/video-processor/scripts/video_processor.py to-mp4 input.avi output.mp4
Options:
--codec: Video codec (default: libx264). Common options: libx264, libx265, h264--preset: Encoding speed/quality preset (default: medium). Options: ultrafast, fast, medium, slow, veryslow
3. Convert Video to WebM
Convert any video file to WebM format (web-optimized):
uv run .claude/skills/video-processor/scripts/video_processor.py to-webm input.mp4 output.webm
Options:
--codec: Video codec (default: libvpx-vp9). Options: libvpx, libvpx-vp9- WebM is optimized for web playback and streaming
4. Transcribe Audio with Whisper
Transcribe audio or video files to text using OpenAI's Whisper model:
# Transcribe video file (audio will be extracted automatically)
uv run .claude/skills/video-processor/scripts/video_processor.py transcribe input.mp4 transcript.txt
# Transcribe audio file directly
uv run .claude/skills/video-processor/scripts/video_processor.py transcribe audio.wav transcript.txt
Options:
--model: Whisper model size (default: base). Options:tiny: Fastest, lowest accuracy (~1GB RAM)base: Fast, good accuracy (~1GB RAM) [DEFAULT]small: Balanced (~2GB RAM)medium: High accuracy (~5GB RAM)large: Best accuracy, slowest (~10GB RAM)
--language: Language code (default: auto-detect). Examples: en, es, fr, de, zh--format: Output format (default: txt). Options: txt, srt, vtt, json
Transcription workflow:
- If input is video, FFmpeg extracts audio to temporary WAV file
- Whisper processes the audio file
- Transcription is saved in requested format
- Temporary files are cleaned up automatically
5. Combined Workflow Example
Process a video end-to-end:
# 1. Extract audio for analysis
uv run .claude/skills/video-processor/scripts/video_processor.py extract-audio lecture.mp4 lecture.wav
# 2. Transcribe to SRT subtitles
uv run .claude/skills/video-processor/scripts/video_processor.py transcribe lecture.mp4 lecture.srt --format srt --model small
# 3. Convert to web format
uv run .claude/skills/video-processor/scripts/video_processor.py to-webm lecture.mp4 lecture.webm
Key Technical Details
FFmpeg and Whisper Integration:
- FFmpeg doesn't transcribe audio itself - it prepares audio for external transcription
- The workflow is: Extract audio (FFmpeg) → Transcribe (Whisper) → Optional: Re-integrate with video
- FFmpeg can pipe audio directly to Whisper for real-time processing (advanced use case)
Audio Format for Transcription:
- Whisper works best with WAV or MP3 formats
- Sample rate: 16kHz is optimal (script handles conversion automatically)
- The script extracts audio with optimal settings for Whisper
Output Formats:
- txt: Plain text transcript
- srt: SubRip subtitle format (includes timestamps)
- vtt: WebVTT subtitle format (web standard)
- json: Detailed JSON with word-level timestamps
Error Handling
The script includes comprehensive error handling:
- Validates input files exist
- Checks FFmpeg and Whisper are installed
- Provides clear error messages for missing dependencies
- Handles temporary file cleanup on errors
Performance Tips
- Use
tinyorbasemodels for quick drafts - Use
smallormediumfor production transcriptions - Use
largeonly when maximum accuracy is required - For long videos, consider extracting audio first, then transcribe in segments
- WebM conversion with VP9 takes longer but produces smaller files
Examples
Example 1: Quick Video to MP4 Conversion
User request:
I have an AVI file from my old camera. Can you convert it to MP4?
You would:
- Use the to-mp4 command with default settings:
uv run .claude/skills/video-processor/scripts/video_processor.py to-mp4 old_video.avi output.mp4 - Confirm the conversion completed successfully
- Inform the user about the output file location
Example 2: Extract Audio and Transcribe
User request:
I recorded a lecture video and need a transcript. Can you extract the audio and transcribe it?
You would:
- First extract the audio:
uv run .claude/skills/video-processor/scripts/video_processor.py extract-audio lecture.mp4 lecture.wav - Then transcribe using the base model (good balance of speed/accuracy):
uv run .claude/skills/video-processor/scripts/video_processor.py transcribe lecture.mp4 transcript.txt --model base - Share the transcript.txt file with the user
Example 3: Create Web-Optimized Video with Subtitles
User request:
I need to put this video on my website with subtitles. Can you help?
You would:
- Convert to WebM for web optimization:
uv run .claude/skills/video-processor/scripts/video_processor.py to-webm presentation.mp4 presentation.webm - Generate SRT subtitle file:
uv run .claude/skills/video-processor/scripts/video_processor.py transcribe presentation.mp4 subtitles.srt --format srt --model small - Inform user they now have:
- presentation.webm (web-optimized video)
- subtitles.srt (subtitle file for embedding)
Example 4: High-Quality Transcription with Language Specification
User request:
I have a Spanish interview video that needs an accurate transcript for publication.
You would:
- Use a larger model with language specified for best accuracy:
uv run .claude/skills/video-processor/scripts/video_processor.py transcribe interview.mp4 transcript.txt --model medium --language es - Optionally create SRT for review:
uv run .claude/skills/video-processor/scripts/video_processor.py transcribe interview.mp4 transcript.srt --format srt --model medium --language es - Review the transcript with the user and make any necessary corrections
Example 5: Batch Processing Multiple Videos
User request:
I have a folder of training videos that all need to be converted to WebM and transcribed.
You would:
- List all video files in the directory:
ls training_videos/*.mp4 - For each video file, run the conversion and transcription:
# For each video: video1.mp4, video2.mp4, etc. uv run .claude/skills/video-processor/scripts/video_processor.py to-webm training_videos/video1.mp4 output/video1.webm uv run .claude/skills/video-processor/scripts/video_processor.py transcribe training_videos/video1.mp4 output/video1.txt --model base # Repeat for each file - Confirm all conversions and transcriptions completed
- Provide summary of output files
Summary
The video-processor skill provides a unified interface for common video processing tasks:
- Audio extraction: Extract audio tracks in various formats
- Format conversion: Convert to MP4 (universal) or WebM (web-optimized)
- Transcription: Speech-to-text with multiple output formats
- Flexible: CLI arguments for model selection, language, and output formats
All operations are handled through a single, well-documented script with sensible defaults and comprehensive error handling.