| name | ab-test-calculator |
| description | Calculate statistical significance for A/B tests. Sample size estimation, power analysis, and conversion rate comparisons with confidence intervals. |
A/B Test Calculator
Statistical significance testing for A/B experiments with power analysis and sample size estimation.
Features
- Significance Testing: Chi-square, Z-test, T-test for conversions
- Sample Size Estimation: Calculate required samples for desired power
- Power Analysis: Determine test power given sample size
- Confidence Intervals: Calculate CIs for conversion rates
- Multiple Variants: Support A/B/n testing
- Bayesian Analysis: Probability to beat baseline
Quick Start
from ab_test_calc import ABTestCalculator
calc = ABTestCalculator()
# Test significance
result = calc.test_significance(
control_visitors=10000,
control_conversions=500,
variant_visitors=10000,
variant_conversions=550
)
print(f"Significant: {result['significant']}")
print(f"P-value: {result['p_value']:.4f}")
print(f"Lift: {result['lift']:.2%}")
CLI Usage
# Test significance
python ab_test_calc.py --test 10000 500 10000 550
# Calculate sample size
python ab_test_calc.py --sample-size --baseline 0.05 --mde 0.10 --power 0.8
# Power analysis
python ab_test_calc.py --power-analysis --baseline 0.05 --mde 0.10 --samples 5000
# Bayesian analysis
python ab_test_calc.py --bayesian 10000 500 10000 550
# Multiple variants
python ab_test_calc.py --test-multi 10000 500 10000 550 10000 520
API Reference
ABTestCalculator Class
class ABTestCalculator:
def __init__(self, alpha: float = 0.05)
# Significance testing
def test_significance(self, control_visitors: int, control_conversions: int,
variant_visitors: int, variant_conversions: int,
test: str = "chi_square") -> dict
# Sample size calculation
def calculate_sample_size(self, baseline_rate: float,
minimum_detectable_effect: float,
power: float = 0.8,
alpha: float = 0.05) -> dict
# Power analysis
def calculate_power(self, baseline_rate: float,
minimum_detectable_effect: float,
sample_size: int,
alpha: float = 0.05) -> dict
# Confidence interval
def confidence_interval(self, visitors: int, conversions: int,
confidence: float = 0.95) -> dict
# Bayesian analysis
def bayesian_analysis(self, control_visitors: int, control_conversions: int,
variant_visitors: int, variant_conversions: int,
simulations: int = 100000) -> dict
# Multiple variants
def test_multiple_variants(self, control: tuple, variants: list,
correction: str = "bonferroni") -> dict
# Duration estimation
def estimate_duration(self, daily_visitors: int, baseline_rate: float,
minimum_detectable_effect: float,
power: float = 0.8) -> dict
Test Methods
Chi-Square Test (Default)
Best for comparing conversion rates between groups.
result = calc.test_significance(
control_visitors=10000,
control_conversions=500,
variant_visitors=10000,
variant_conversions=550,
test="chi_square"
)
Z-Test for Proportions
Good for large sample sizes.
result = calc.test_significance(
control_visitors=10000,
control_conversions=500,
variant_visitors=10000,
variant_conversions=550,
test="z_test"
)
Sample Size Estimation
Calculate the number of visitors needed per variant:
result = calc.calculate_sample_size(
baseline_rate=0.05, # Current conversion rate (5%)
minimum_detectable_effect=0.10, # 10% relative improvement
power=0.8, # 80% power
alpha=0.05 # 5% significance level
)
# Returns:
{
"sample_size_per_variant": 31234,
"total_sample_size": 62468,
"baseline_rate": 0.05,
"expected_variant_rate": 0.055,
"minimum_detectable_effect": 0.10,
"power": 0.8,
"alpha": 0.05
}
Power Analysis
Calculate the probability of detecting an effect:
result = calc.calculate_power(
baseline_rate=0.05,
minimum_detectable_effect=0.10,
sample_size=25000,
alpha=0.05
)
# Returns:
{
"power": 0.72,
"interpretation": "72% chance of detecting the effect if it exists"
}
Bayesian Analysis
Get probability that variant beats control:
result = calc.bayesian_analysis(
control_visitors=10000,
control_conversions=500,
variant_visitors=10000,
variant_conversions=550
)
# Returns:
{
"prob_variant_better": 0.9523,
"prob_control_better": 0.0477,
"expected_lift": 0.098,
"credible_interval_95": [0.02, 0.18]
}
Multiple Variant Testing
Test multiple variants with correction for multiple comparisons:
result = calc.test_multiple_variants(
control=(10000, 500), # (visitors, conversions)
variants=[
(10000, 550), # Variant A
(10000, 520), # Variant B
(10000, 480) # Variant C
],
correction="bonferroni" # or "holm", "none"
)
# Returns:
{
"control": {"visitors": 10000, "conversions": 500, "rate": 0.05},
"variants": [
{"visitors": 10000, "conversions": 550, "rate": 0.055,
"lift": 0.10, "p_value": 0.012, "significant": True},
...
],
"winner": "Variant A",
"correction_method": "bonferroni"
}
Output Format
Significance Test Result
{
"significant": True,
"p_value": 0.0234,
"control_rate": 0.05,
"variant_rate": 0.055,
"lift": 0.10,
"lift_absolute": 0.005,
"confidence_interval": {
"lower": 0.02,
"upper": 0.18
},
"test_method": "chi_square",
"alpha": 0.05,
"recommendation": "Variant shows significant improvement"
}
Example Workflows
Pre-Test Planning
calc = ABTestCalculator()
# 1. Estimate required sample size
sample = calc.calculate_sample_size(
baseline_rate=0.03, # Current 3% conversion
minimum_detectable_effect=0.15, # Want to detect 15% lift
power=0.8
)
print(f"Need {sample['sample_size_per_variant']} visitors per variant")
# 2. Estimate test duration
duration = calc.estimate_duration(
daily_visitors=5000,
baseline_rate=0.03,
minimum_detectable_effect=0.15
)
print(f"Test will take ~{duration['days']} days")
Post-Test Analysis
calc = ABTestCalculator()
# 1. Test significance
result = calc.test_significance(
control_visitors=15000,
control_conversions=450,
variant_visitors=15000,
variant_conversions=525
)
# 2. Get Bayesian probability
bayes = calc.bayesian_analysis(15000, 450, 15000, 525)
print(f"P-value: {result['p_value']:.4f}")
print(f"Lift: {result['lift']:.2%}")
print(f"Probability variant wins: {bayes['prob_variant_better']:.1%}")
Dependencies
- scipy>=1.10.0
- numpy>=1.24.0
- statsmodels>=0.14.0