| name | blog-post-optimizer |
| description | Analyze blog posts for SEO, readability, headline quality, and content structure. Generate meta tags and optimization recommendations with scoring. |
Blog Post Optimizer
Comprehensive content analysis toolkit for optimizing blog posts, articles, and web content. Analyzes headlines, SEO elements, content structure, readability, and generates actionable recommendations with scores.
Quick Start
from scripts.blog_post_optimizer import BlogPostOptimizer
# Initialize optimizer
optimizer = BlogPostOptimizer()
# Analyze a blog post
with open('blog_post.md', 'r') as f:
content = f.read()
# Full analysis
results = optimizer.analyze_full(
content=content,
headline="10 Ways to Boost Your Productivity",
keywords=["productivity", "time management", "efficiency"]
)
# View scores
print(f"Overall Score: {results['overall_score']}/100")
print(f"Headline Score: {results['headline']['score']}/100")
print(f"SEO Score: {results['seo']['score']}/100")
print(f"Readability Grade: {results['readability']['grade_level']}")
# Export HTML report
optimizer.export_html_report(results, 'report.html')
Features
1. Headline Analysis
- Power Words Detection - Identifies emotional trigger words
- Character Count - Optimal range 50-60 characters
- Emotional Impact - Measures headline engagement potential
- A/B Suggestions - Generate alternative headlines
2. SEO Optimization
- Keyword Density - Target 1-2% for primary keyword
- Keyword Prominence - Check placement in first 100 words
- Meta Description - Auto-generate 150-160 characters
- Title Tag - Optimize for 50-60 characters
- URL Slug - Generate SEO-friendly slugs
3. Content Structure
- Heading Hierarchy - Validate H1/H2/H3 structure
- Paragraph Length - Ideal 3-5 sentences
- List Usage - Detect numbered and bulleted lists
- Image Placement - Check for visual elements
- Subheading Distribution - Ensure consistent spacing
4. Readability Analysis
- Flesch-Kincaid Grade - Target grade 8-10
- Reading Ease - 60-70 is ideal
- Sentence Complexity - Average words per sentence
- Passive Voice - Percentage (aim for <10%)
5. Content Statistics
- Word Count - Article length tracking
- Reading Time - Estimated at 265 words/minute
- Character Count - Total characters
- Average Sentence Length - Words per sentence
6. Meta Tag Generation
- Open Graph - Social media preview tags
- Twitter Cards - Twitter-specific meta tags
- Schema.org - Article structured data (JSON-LD)
API Reference
BlogPostOptimizer
optimizer = BlogPostOptimizer()
analyze_headline(headline: str) -> Dict
Analyze headline effectiveness.
Returns:
{
'score': 75, # 0-100
'character_count': 52,
'power_words': ['boost', 'proven'],
'emotional_impact': 68,
'suggestions': [
"10 Proven Ways to Boost Your Productivity Today",
"Boost Your Productivity: 10 Essential Strategies"
]
}
analyze_seo(content: str, keywords: List[str]) -> Dict
Analyze SEO elements.
Returns:
{
'score': 80,
'keyword_density': {'productivity': 1.8, 'time management': 0.9},
'keyword_prominence': True, # In first 100 words
'meta_description': 'Discover 10 proven ways to boost productivity...',
'title_tag': '10 Ways to Boost Productivity | Your Site',
'url_slug': 'boost-productivity-10-ways'
}
analyze_structure(content: str) -> Dict
Analyze content structure.
Returns:
{
'score': 85,
'h1_count': 1,
'h2_count': 10,
'avg_paragraph_length': 4.2, # Sentences
'list_count': 3,
'warnings': ['Paragraph on line 45 is too long (8 sentences)']
}
analyze_readability(content: str) -> Dict
Calculate readability scores.
Returns:
{
'flesch_kincaid_grade': 8.5,
'reading_ease': 65.2,
'avg_sentence_length': 15.3,
'passive_voice_pct': 8.5,
'complexity_score': 72
}
calculate_content_stats(content: str) -> Dict
Calculate basic content statistics.
Returns:
{
'word_count': 1250,
'reading_time_minutes': 5,
'character_count': 7890,
'sentence_count': 85,
'paragraph_count': 28
}
generate_meta_tags(title: str, description: str, keywords: List[str]) -> Dict
Generate social media and SEO meta tags.
Returns:
{
'open_graph': {
'og:title': '10 Ways to Boost Your Productivity',
'og:description': 'Discover proven strategies...',
'og:type': 'article'
},
'twitter_card': {
'twitter:card': 'summary_large_image',
'twitter:title': '10 Ways to Boost Your Productivity'
},
'schema_org': {
'@context': 'https://schema.org',
'@type': 'Article',
'headline': '10 Ways to Boost Your Productivity'
}
}
analyze_full(content: str, headline: str, keywords: List[str]) -> Dict
Complete analysis combining all methods.
Returns:
{
'overall_score': 78,
'headline': {...},
'seo': {...},
'structure': {...},
'readability': {...},
'stats': {...},
'recommendations': [
{'priority': 'high', 'issue': '...', 'fix': '...'}
]
}
export_html_report(results: Dict, output_path: str)
Generate color-coded HTML report with charts and recommendations.
CLI Usage
Single Blog Post Analysis
python scripts/blog_post_optimizer.py \
--input blog_post.md \
--headline "10 Ways to Boost Your Productivity" \
--keywords "productivity,time management,efficiency" \
--output report.html \
--format html
Quick Analysis (JSON Output)
python scripts/blog_post_optimizer.py \
--input article.txt \
--headline "Ultimate Guide to Python" \
--keywords "python,programming" \
--format json
Headline Analysis Only
python scripts/blog_post_optimizer.py \
--headline-only "10 Productivity Hacks You Need to Know"
CLI Arguments
| Argument | Description | Default |
|---|---|---|
--input, -i |
Input file (txt/md/html) | - |
--headline |
Blog post headline | Extracted from content |
--keywords, -k |
Comma-separated keywords | - |
--output, -o |
Output file path | stdout |
--format, -f |
Output format (json/html) | json |
--headline-only |
Analyze headline only | False |
Examples
Example 1: Full Analysis with HTML Report
optimizer = BlogPostOptimizer()
with open('article.md') as f:
content = f.read()
results = optimizer.analyze_full(
content=content,
headline="The Complete Guide to Remote Work",
keywords=["remote work", "productivity", "work from home"]
)
optimizer.export_html_report(results, 'seo_report.html')
Example 2: Headline Optimization
optimizer = BlogPostOptimizer()
headline = "Ways to Improve Your Writing"
analysis = optimizer.analyze_headline(headline)
print(f"Score: {analysis['score']}/100")
print(f"Power words found: {', '.join(analysis['power_words'])}")
print("\nSuggestions:")
for suggestion in analysis['suggestions']:
print(f" - {suggestion}")
Example 3: SEO Keyword Analysis
optimizer = BlogPostOptimizer()
with open('post.md') as f:
content = f.read()
seo = optimizer.analyze_seo(
content=content,
keywords=["python", "tutorial", "beginners"]
)
for keyword, density in seo['keyword_density'].items():
print(f"{keyword}: {density:.1f}%")
Dependencies
nltk>=3.8.0
textblob>=0.17.0
beautifulsoup4>=4.12.0
pandas>=2.0.0
matplotlib>=3.7.0
reportlab>=4.0.0
lxml>=4.9.0
Limitations
- HTML Parsing: Complex HTML structures may affect accuracy
- Keyword Context: Doesn't account for keyword context (positive/negative)
- Language: English only for readability and power words
- Power Words: Subjective; effectiveness varies by audience
- Readability: Formulas are guides, not absolute measures
- SEO: Search engine algorithms constantly change
- Image Analysis: Cannot analyze actual image content
- External Links: Doesn't validate external link quality