| name | budget-analyzer |
| description | Analyze personal or business expenses from CSV/Excel. Categorize spending, identify trends, compare periods, and get savings recommendations. |
Budget Analyzer
Comprehensive expense analysis tool for personal finance and business budgeting.
Features
- Auto-Categorization: Classify expenses by merchant/description
- Trend Analysis: Month-over-month spending patterns
- Period Comparison: Compare spending across time periods
- Category Breakdown: Pie charts and bar graphs by category
- Savings Recommendations: Identify areas to reduce spending
- Budget vs Actual: Track against budget targets
- Export Reports: PDF and HTML summaries
Quick Start
from budget_analyzer import BudgetAnalyzer
analyzer = BudgetAnalyzer()
# Load transaction data
analyzer.load_csv("transactions.csv",
date_col="date",
amount_col="amount",
description_col="description")
# Analyze spending
summary = analyzer.analyze()
print(summary)
# Get category breakdown
categories = analyzer.by_category()
print(categories)
# Generate report
analyzer.generate_report("budget_report.pdf")
CLI Usage
# Basic analysis
python budget_analyzer.py --input transactions.csv --date date --amount amount
# With custom categories
python budget_analyzer.py --input data.csv --categories custom_categories.json
# Compare two periods
python budget_analyzer.py --input data.csv --compare "2024-01" "2024-02"
# Generate PDF report
python budget_analyzer.py --input data.csv --report report.pdf
# Set budget targets
python budget_analyzer.py --input data.csv --budget budget.json --report report.pdf
Input Format
Transaction CSV
date,amount,description,category
2024-01-15,45.99,Amazon Purchase,Shopping
2024-01-16,12.50,Starbucks,Food & Dining
2024-01-17,150.00,Electric Company,Utilities
Custom Categories (JSON)
{
"Food & Dining": ["starbucks", "mcdonalds", "restaurant", "uber eats"],
"Transportation": ["uber", "lyft", "gas station", "shell"],
"Shopping": ["amazon", "walmart", "target"],
"Utilities": ["electric", "water", "gas", "internet"]
}
Budget Targets (JSON)
{
"Food & Dining": 500,
"Transportation": 200,
"Shopping": 300,
"Utilities": 250,
"Entertainment": 150
}
API Reference
BudgetAnalyzer Class
class BudgetAnalyzer:
def __init__(self)
# Data Loading
def load_csv(self, filepath: str, date_col: str, amount_col: str,
description_col: str = None, category_col: str = None) -> 'BudgetAnalyzer'
def load_dataframe(self, df: pd.DataFrame) -> 'BudgetAnalyzer'
# Categorization
def set_categories(self, categories: Dict[str, List[str]]) -> 'BudgetAnalyzer'
def auto_categorize(self) -> 'BudgetAnalyzer'
# Analysis
def analyze(self) -> Dict # Full summary
def by_category(self) -> pd.DataFrame
def by_month(self) -> pd.DataFrame
def by_day_of_week(self) -> pd.DataFrame
def top_expenses(self, n: int = 10) -> pd.DataFrame
def recurring_expenses(self) -> pd.DataFrame
# Comparison
def compare_periods(self, period1: str, period2: str) -> Dict
def year_over_year(self) -> pd.DataFrame
# Budgeting
def set_budget(self, budget: Dict[str, float]) -> 'BudgetAnalyzer'
def budget_vs_actual(self) -> pd.DataFrame
def budget_alerts(self) -> List[Dict]
# Insights
def get_recommendations(self) -> List[str]
def spending_score(self) -> Dict
# Visualization
def plot_categories(self, output: str) -> str
def plot_trends(self, output: str) -> str
def plot_budget_comparison(self, output: str) -> str
# Export
def generate_report(self, output: str, format: str = "pdf") -> str
def to_csv(self, output: str) -> str
Analysis Features
Summary Statistics
summary = analyzer.analyze()
# Returns:
# {
# "total_spent": 2500.00,
# "transaction_count": 45,
# "date_range": {"start": "2024-01-01", "end": "2024-01-31"},
# "average_transaction": 55.56,
# "largest_expense": {"amount": 500, "description": "Rent"},
# "categories": {"Food": 450, "Transport": 200, ...}
# }
Category Breakdown
categories = analyzer.by_category()
# Returns DataFrame:
# category | amount | percentage | count
# Food & Dining | 450.00 | 18.0% | 15
# Transportation | 200.00 | 8.0% | 8
# ...
Monthly Trends
monthly = analyzer.by_month()
# Returns DataFrame:
# month | total | avg_transaction | count
# 2024-01 | 2500.00 | 55.56 | 45
# 2024-02 | 2800.00 | 60.87 | 46
Period Comparison
comparison = analyzer.compare_periods("2024-01", "2024-02")
# Returns:
# {
# "period1_total": 2500.00,
# "period2_total": 2800.00,
# "difference": 300.00,
# "percent_change": 12.0,
# "category_changes": {
# "Food": {"change": 50, "percent": 11.1},
# ...
# }
# }
Budget Tracking
Set Budget Targets
analyzer.set_budget({
"Food & Dining": 500,
"Transportation": 200,
"Shopping": 300
})
Budget vs Actual
comparison = analyzer.budget_vs_actual()
# Returns DataFrame:
# category | budget | actual | difference | status
# Food & Dining | 500 | 450 | 50 | under
# Transportation | 200 | 250 | -50 | over
Budget Alerts
alerts = analyzer.budget_alerts()
# Returns:
# [
# {"category": "Transportation", "status": "over", "amount": 250, "budget": 200, "percent_over": 25},
# {"category": "Shopping", "status": "warning", "amount": 280, "budget": 300, "percent_used": 93}
# ]
Recommendations Engine
recommendations = analyzer.get_recommendations()
# Returns:
# [
# "Food & Dining spending increased 15% from last month. Consider meal prepping.",
# "You have 3 subscription services totaling $45/month. Review for unused subscriptions.",
# "Transportation costs are 25% over budget. Consider carpooling or public transit.",
# "Top merchant: Amazon ($350). Set spending limits for online shopping."
# ]
Spending Score
score = analyzer.spending_score()
# Returns:
# {
# "overall_score": 72, # 0-100
# "factors": {
# "budget_adherence": 65,
# "spending_consistency": 80,
# "savings_rate": 70
# },
# "grade": "B",
# "summary": "Good spending habits with room for improvement in budget adherence."
# }
Auto-Categorization
Built-in category patterns:
DEFAULT_CATEGORIES = {
"Food & Dining": ["restaurant", "cafe", "starbucks", "mcdonald", "uber eats", "doordash"],
"Transportation": ["uber", "lyft", "gas", "shell", "chevron", "parking"],
"Shopping": ["amazon", "walmart", "target", "costco", "best buy"],
"Utilities": ["electric", "water", "gas", "internet", "phone", "verizon"],
"Entertainment": ["netflix", "spotify", "hulu", "movie", "theater"],
"Healthcare": ["pharmacy", "cvs", "walgreens", "doctor", "hospital"],
"Travel": ["airline", "hotel", "airbnb", "booking"],
"Subscriptions": ["subscription", "membership", "monthly"]
}
Visualizations
Category Pie Chart
analyzer.plot_categories("categories.png")
# Creates pie chart of spending by category
Spending Trends
analyzer.plot_trends("trends.png")
# Creates line chart of monthly spending over time
Budget Comparison
analyzer.plot_budget_comparison("budget.png")
# Creates bar chart comparing budget vs actual by category
Report Generation
PDF Report
analyzer.generate_report("report.pdf")
# Includes:
# - Executive summary
# - Category breakdown with charts
# - Monthly trends
# - Top expenses
# - Budget vs actual (if set)
# - Recommendations
HTML Report
analyzer.generate_report("report.html", format="html")
# Interactive HTML report with charts
Example Workflows
Personal Finance Review
analyzer = BudgetAnalyzer()
analyzer.load_csv("bank_transactions.csv",
date_col="Date",
amount_col="Amount",
description_col="Description")
# Auto-categorize transactions
analyzer.auto_categorize()
# Set monthly budget
analyzer.set_budget({
"Food & Dining": 600,
"Transportation": 250,
"Entertainment": 200
})
# Get full analysis
print(analyzer.analyze())
print(analyzer.budget_vs_actual())
print(analyzer.get_recommendations())
# Generate report
analyzer.generate_report("monthly_review.pdf")
Business Expense Tracking
analyzer = BudgetAnalyzer()
analyzer.load_csv("business_expenses.csv",
date_col="date",
amount_col="amount",
category_col="expense_type")
# Compare quarters
q1_vs_q2 = analyzer.compare_periods("2024-Q1", "2024-Q2")
# Top expense categories
top = analyzer.by_category().head(5)
# Generate report for accounting
analyzer.generate_report("quarterly_expenses.pdf")
Dependencies
- pandas>=2.0.0
- numpy>=1.24.0
- matplotlib>=3.7.0
- reportlab>=4.0.0