Distance Calculator
Calculate geographic distances and find nearby locations using various methods.
Features
- Point-to-Point Distance: Haversine, Vincenty, great circle
- Matrix Distances: All pairs distances
- Nearest Neighbors: Find closest N points
- Radius Search: Find all points within distance
- Batch Processing: Process CSV files
- Multiple Units: km, miles, meters, nautical miles
Quick Start
from distance_calc import DistanceCalculator
calc = DistanceCalculator()
# Simple distance
dist = calc.distance(
(40.7128, -74.0060), # New York
(34.0522, -118.2437) # Los Angeles
)
print(f"Distance: {dist:.2f} km")
# Find nearest points
nearest = calc.find_nearest(
origin=(40.7128, -74.0060),
points=store_locations,
n=5
)
CLI Usage
# Distance between two points
python distance_calc.py --from "40.7128,-74.0060" --to "34.0522,-118.2437"
# Find nearest from CSV
python distance_calc.py --origin "40.7128,-74.0060" --input stores.csv --nearest 5
# Points within radius
python distance_calc.py --origin "40.7128,-74.0060" --input stores.csv --radius 50
# Distance matrix
python distance_calc.py --input locations.csv --matrix --output distances.csv
# Different units
python distance_calc.py --from "40.7128,-74.0060" --to "34.0522,-118.2437" --unit miles
API Reference
DistanceCalculator Class
class DistanceCalculator:
def __init__(self, unit: str = "km", method: str = "haversine")
# Point-to-point
def distance(self, point1: tuple, point2: tuple) -> float
def distance_with_details(self, point1: tuple, point2: tuple) -> dict
# Batch operations
def distance_matrix(self, points: list) -> list
def distances_from_origin(self, origin: tuple, points: list) -> list
# Search
def find_nearest(self, origin: tuple, points: list, n: int = 1) -> list
def find_within_radius(self, origin: tuple, points: list, radius: float) -> list
# File operations
def from_csv(self, filepath: str, lat_col: str, lon_col: str) -> list
def matrix_to_csv(self, matrix: list, labels: list, output: str)
Distance Methods
Haversine (Default)
- Great circle distance assuming spherical Earth
- Fast and accurate for most purposes
- Error: ~0.5% max
Vincenty
- More accurate, accounts for Earth's ellipsoid shape
- Slightly slower
- Error: ~0.5mm
calc = DistanceCalculator(method="vincenty")
Units
| Unit |
Description |
km |
Kilometers (default) |
miles |
Miles |
m |
Meters |
nm |
Nautical miles |
ft |
Feet |
calc = DistanceCalculator(unit="miles")
# Or convert after
dist_km = calc.distance(p1, p2)
dist_miles = calc.convert(dist_km, "km", "miles")
Example Workflows
Find Nearest Stores
calc = DistanceCalculator(unit="miles")
stores = calc.from_csv("stores.csv", "lat", "lon")
customer = (40.7128, -74.0060)
nearest = calc.find_nearest(customer, stores, n=3)
for store in nearest:
print(f"{store['name']}: {store['distance']:.1f} miles")
Delivery Zone Check
calc = DistanceCalculator(unit="km")
warehouse = (40.7128, -74.0060)
delivery_radius = 50 # km
customers = calc.from_csv("customers.csv", "lat", "lon")
in_zone = calc.find_within_radius(warehouse, customers, delivery_radius)
print(f"{len(in_zone)} customers in delivery zone")
Distance Matrix for Routing
calc = DistanceCalculator()
stops = [
(40.7128, -74.0060),
(40.7589, -73.9851),
(40.7484, -73.9857),
(40.7527, -73.9772)
]
matrix = calc.distance_matrix(stops)
calc.matrix_to_csv(matrix, ["HQ", "Store1", "Store2", "Store3"], "distances.csv")
Output Formats
Distance Result
{
"distance": 3935.75,
"unit": "km",
"from": {"lat": 40.7128, "lon": -74.0060},
"to": {"lat": 34.0522, "lon": -118.2437},
"method": "haversine"
}
Nearest Points Result
[
{"point": (lat, lon), "distance": 5.2, "data": {...}},
{"point": (lat, lon), "distance": 8.1, "data": {...}},
]
Dependencies