Podcast Splitter
Automatically split audio files into segments based on silence detection. Perfect for dividing podcasts into chapters, creating clips from long recordings, or removing dead air.
Quick Start
from scripts.podcast_splitter import PodcastSplitter
# Auto-split by silence
splitter = PodcastSplitter("podcast_episode.mp3")
segments = splitter.split_by_silence()
splitter.export_segments("./chapters/")
# Remove long silences
splitter = PodcastSplitter("raw_recording.mp3")
splitter.remove_silence(min_length=2000) # Remove silences > 2 seconds
splitter.save("clean_recording.mp3")
Features
- Silence Detection: Configurable threshold and duration
- Auto-Split: Divide audio at natural breaks
- Silence Removal: Remove or shorten long pauses
- Chapter Export: Save individual segments as files
- Preview Mode: List detected silences without splitting
- Batch Processing: Process multiple files
API Reference
Initialization
splitter = PodcastSplitter("audio.mp3")
# With custom settings
splitter = PodcastSplitter(
"audio.mp3",
silence_thresh=-40, # dBFS threshold
min_silence_len=1000, # Minimum silence length (ms)
keep_silence=300 # Silence to keep at segment edges (ms)
)
Silence Detection
# Detect silence regions
silences = splitter.detect_silence()
# Returns: [(start_ms, end_ms), (start_ms, end_ms), ...]
# Print silence summary
splitter.print_silence_report()
Splitting
# Split at all detected silences
segments = splitter.split_by_silence()
# Split at silences longer than threshold
segments = splitter.split_by_silence(min_silence_len=3000)
# Limit number of segments
segments = splitter.split_by_silence(max_segments=10)
Silence Removal
# Remove silences longer than threshold
splitter.remove_silence(min_length=2000) # Remove >2s silences
# Shorten silences to max length
splitter.shorten_silence(max_length=500) # Cap at 500ms
# Remove leading/trailing silence only
splitter.strip_silence()
Export
# Export all segments
splitter.export_segments(
output_dir="./chapters/",
prefix="chapter", # chapter_01.mp3, chapter_02.mp3
format="mp3",
bitrate=192
)
# Export specific segments
splitter.export_segment(0, "intro.mp3")
splitter.export_segment(3, "conclusion.mp3")
# Save modified audio
splitter.save("output.mp3")
CLI Usage
# Split podcast into chapters
python podcast_splitter.py --input episode.mp3 --output-dir ./chapters/
# Detect and list silences (no splitting)
python podcast_splitter.py --input episode.mp3 --detect-only
# Remove long silences
python podcast_splitter.py --input raw.mp3 --output clean.mp3 --remove-silence 2000
# Custom sensitivity
python podcast_splitter.py --input episode.mp3 --output-dir ./chapters/ \
--threshold -35 --min-silence 2000 --keep-silence 500
CLI Arguments
| Argument |
Description |
Default |
--input |
Input audio file |
Required |
--output |
Output file (for silence removal) |
- |
--output-dir |
Output directory for segments |
- |
--detect-only |
Only detect/report silences |
False |
--threshold |
Silence threshold (dBFS) |
-40 |
--min-silence |
Minimum silence to detect (ms) |
1000 |
--keep-silence |
Silence to keep at edges (ms) |
300 |
--max-segments |
Maximum segments to create |
None |
--remove-silence |
Remove silences longer than (ms) |
- |
--shorten-silence |
Cap silence length at (ms) |
- |
--prefix |
Output filename prefix |
segment |
--format |
Output format |
mp3 |
--bitrate |
Output bitrate (kbps) |
192 |
Examples
Split Interview into Q&A Segments
splitter = PodcastSplitter(
"interview.mp3",
silence_thresh=-35, # Less sensitive (louder threshold)
min_silence_len=2000, # Only split on 2+ second pauses
keep_silence=400 # Keep some silence for natural feel
)
segments = splitter.split_by_silence()
print(f"Found {len(segments)} segments")
splitter.export_segments("./questions/", prefix="qa")
Remove Dead Air from Recording
splitter = PodcastSplitter("raw_recording.mp3")
# Show what would be removed
splitter.print_silence_report()
# Remove silences longer than 3 seconds
splitter.remove_silence(min_length=3000)
# Cap remaining silences at 1 second
splitter.shorten_silence(max_length=1000)
splitter.save("clean_recording.mp3")
Create Highlight Clips
splitter = PodcastSplitter("episode.mp3")
segments = splitter.split_by_silence(min_silence_len=5000)
# Export only segments longer than 30 seconds
for i, segment in enumerate(segments):
duration = segment['end'] - segment['start']
if duration > 30000: # > 30 seconds
splitter.export_segment(i, f"highlight_{i+1}.mp3")
Batch Process Episodes
import os
from scripts.podcast_splitter import PodcastSplitter
episodes_dir = "./raw_episodes/"
output_dir = "./processed/"
for filename in os.listdir(episodes_dir):
if filename.endswith('.mp3'):
filepath = os.path.join(episodes_dir, filename)
splitter = PodcastSplitter(filepath)
# Remove long silences
splitter.remove_silence(min_length=2000)
# Save cleaned version
output_path = os.path.join(output_dir, filename)
splitter.save(output_path)
print(f"Processed: {filename}")
Preview Silence Detection
splitter = PodcastSplitter("episode.mp3")
# Get detailed silence info
silences = splitter.detect_silence()
print("Detected Silences:")
for i, (start, end) in enumerate(silences):
duration = (end - start) / 1000
start_time = start / 1000
print(f" {i+1}. {start_time:.1f}s - {duration:.1f}s silence")
# Print summary
splitter.print_silence_report()
Detection Settings Guide
| Audio Type |
Threshold |
Min Silence |
Notes |
| Quiet studio |
-50 dBFS |
500ms |
Very sensitive |
| Normal podcast |
-40 dBFS |
1000ms |
Default |
| Noisy recording |
-35 dBFS |
1500ms |
Less sensitive |
| Music with breaks |
-30 dBFS |
2000ms |
For spoken breaks |
Adjusting Sensitivity
- More splits: Lower threshold (e.g., -50), shorter min_silence
- Fewer splits: Higher threshold (e.g., -30), longer min_silence
- Natural feel: Longer keep_silence (500-1000ms)
- Tight edits: Shorter keep_silence (100-200ms)
Dependencies
pydub>=0.25.0
Note: Requires FFmpeg installed on system.
Limitations
- Works best with speech content (not music)
- Very noisy recordings may need threshold adjustment
- Long files use significant memory
- No automatic chapter naming (manual rename needed)