Readability Scorer
Analyze text readability using industry-standard formulas. Get grade level estimates, complexity metrics, and suggestions for improving clarity.
Quick Start
from scripts.readability_scorer import ReadabilityScorer
# Score text
scorer = ReadabilityScorer()
scores = scorer.analyze("Your text to analyze goes here.")
print(f"Grade Level: {scores['grade_level']}")
print(f"Flesch Reading Ease: {scores['flesch_reading_ease']}")
Features
- Multiple Formulas: Flesch-Kincaid, Gunning Fog, SMOG, Coleman-Liau, ARI
- Grade Level: US grade level estimate
- Reading Ease: 0-100 ease score
- Text Statistics: Words, sentences, syllables, complex words
- Batch Analysis: Process multiple documents
- Comparison: Compare readability across texts
API Reference
Initialization
scorer = ReadabilityScorer()
Analysis
scores = scorer.analyze(text)
# Returns:
# {
# 'flesch_reading_ease': 65.2,
# 'flesch_kincaid_grade': 8.1,
# 'gunning_fog': 10.2,
# 'smog_index': 9.5,
# 'coleman_liau': 9.8,
# 'ari': 8.4,
# 'grade_level': 8.5, # Average
# 'reading_time_minutes': 2.3,
# 'stats': {
# 'words': 250,
# 'sentences': 15,
# 'syllables': 380,
# 'complex_words': 25,
# 'avg_words_per_sentence': 16.7,
# 'avg_syllables_per_word': 1.52
# }
# }
Individual Scores
# Get specific scores
fre = scorer.flesch_reading_ease(text)
fkg = scorer.flesch_kincaid_grade(text)
fog = scorer.gunning_fog(text)
smog = scorer.smog_index(text)
Batch Analysis
texts = [text1, text2, text3]
results = scorer.analyze_batch(texts)
# From files
results = scorer.analyze_files(["doc1.txt", "doc2.txt"])
Comparison
# Compare two texts
comparison = scorer.compare(text1, text2)
print(f"Text 1 grade: {comparison['text1']['grade_level']}")
print(f"Text 2 grade: {comparison['text2']['grade_level']}")
CLI Usage
# Analyze text
python readability_scorer.py --text "Your text here"
# Analyze file
python readability_scorer.py --input document.txt
# Compare files
python readability_scorer.py --compare doc1.txt doc2.txt
# Batch analyze directory
python readability_scorer.py --input-dir ./docs --output report.csv
# Specific formula only
python readability_scorer.py --input doc.txt --formula flesch
CLI Arguments
| Argument |
Description |
Default |
--text |
Text to analyze |
- |
--input |
Input file |
- |
--input-dir |
Directory of files |
- |
--output |
Output file (json/csv) |
- |
--compare |
Compare two files |
- |
--formula |
Specific formula |
all |
Score Interpretation
Flesch Reading Ease
| Score |
Difficulty |
Grade Level |
| 90-100 |
Very Easy |
5th grade |
| 80-89 |
Easy |
6th grade |
| 70-79 |
Fairly Easy |
7th grade |
| 60-69 |
Standard |
8th-9th grade |
| 50-59 |
Fairly Hard |
10th-12th grade |
| 30-49 |
Difficult |
College |
| 0-29 |
Very Difficult |
College graduate |
Grade Level Scale
| Grade |
Audience |
| 1-5 |
Elementary school |
| 6-8 |
Middle school |
| 9-12 |
High school |
| 13-16 |
College |
| 17+ |
Graduate level |
Examples
Analyze Blog Post
scorer = ReadabilityScorer()
blog_post = """
Writing clear content is essential for engaging readers.
Short sentences help. Simple words work best.
Your audience will thank you for making things easy to understand.
"""
scores = scorer.analyze(blog_post)
print(f"Flesch Reading Ease: {scores['flesch_reading_ease']:.1f}")
print(f"Grade Level: {scores['grade_level']:.1f}")
print(f"Reading Time: {scores['reading_time_minutes']:.1f} minutes")
if scores['grade_level'] > 8:
print("Consider simplifying for a wider audience.")
Compare Document Versions
scorer = ReadabilityScorer()
original = open("original.txt").read()
simplified = open("simplified.txt").read()
comparison = scorer.compare(original, simplified)
print("Original:")
print(f" Grade Level: {comparison['text1']['grade_level']:.1f}")
print(f" Flesch Ease: {comparison['text1']['flesch_reading_ease']:.1f}")
print("\nSimplified:")
print(f" Grade Level: {comparison['text2']['grade_level']:.1f}")
print(f" Flesch Ease: {comparison['text2']['flesch_reading_ease']:.1f}")
improvement = comparison['text1']['grade_level'] - comparison['text2']['grade_level']
print(f"\nImprovement: {improvement:.1f} grade levels easier")
Batch Analyze Documentation
scorer = ReadabilityScorer()
import os
results = []
for filename in os.listdir("./docs"):
if filename.endswith(".md"):
text = open(f"./docs/{filename}").read()
scores = scorer.analyze(text)
results.append({
'file': filename,
'grade': scores['grade_level'],
'ease': scores['flesch_reading_ease']
})
# Sort by difficulty
results.sort(key=lambda x: x['grade'], reverse=True)
print("Documents by Difficulty:")
for r in results:
print(f" {r['file']}: Grade {r['grade']:.1f}")
Dependencies
nltk>=3.8.0
Limitations
- English language only
- Formulas designed for prose (may not work well for lists, code, etc.)
- Syllable counting is estimated (may have minor inaccuracies)
- Doesn't assess comprehension, only surface-level complexity