| name | time-series-decomposer |
| description | Decompose time series into trend, seasonal, and residual components. Use for forecasting, pattern analysis, and seasonality detection. |
Time Series Decomposer
Extract trend, seasonal, and residual components from time series data with visualization and basic forecasting.
Features
- Decomposition: Additive and multiplicative models
- Trend Extraction: Moving averages, polynomial fitting
- Seasonality Detection: Auto-detect and extract periodic patterns
- Residual Analysis: Identify anomalies in residuals
- Visualization: Component plots, ACF/PACF
- Basic Forecasting: Trend extrapolation, seasonal naive
Quick Start
from ts_decomposer import TimeSeriesDecomposer
decomposer = TimeSeriesDecomposer()
decomposer.load_csv("sales.csv", date_col="date", value_col="revenue")
# Decompose
result = decomposer.decompose(period=12) # Monthly seasonality
print(f"Trend strength: {result['trend_strength']:.2f}")
print(f"Seasonal strength: {result['seasonal_strength']:.2f}")
# Plot components
decomposer.plot_components("decomposition.png")
CLI Usage
# Basic decomposition
python ts_decomposer.py --input data.csv --date date --value sales --period 12
# Multiplicative model
python ts_decomposer.py --input data.csv --date date --value sales --period 12 --model multiplicative
# With forecast
python ts_decomposer.py --input data.csv --date date --value sales --period 12 --forecast 6
# Auto-detect period
python ts_decomposer.py --input data.csv --date date --value sales --auto-period
# Generate plots
python ts_decomposer.py --input data.csv --date date --value sales --period 12 --plot components.png
# Output JSON
python ts_decomposer.py --input data.csv --date date --value sales --period 12 --json
API Reference
TimeSeriesDecomposer Class
class TimeSeriesDecomposer:
def __init__(self)
# Data loading
def load_csv(self, filepath: str, date_col: str, value_col: str,
date_format: str = None) -> 'TimeSeriesDecomposer'
def load_series(self, series: pd.Series) -> 'TimeSeriesDecomposer'
def load_dataframe(self, df: pd.DataFrame, date_col: str,
value_col: str) -> 'TimeSeriesDecomposer'
# Decomposition
def decompose(self, period: int = None, model: str = "additive") -> dict
def detect_period(self) -> int
def extract_trend(self, method: str = "moving_average",
window: int = None) -> pd.Series
def extract_seasonal(self, period: int) -> pd.Series
# Analysis
def analyze_trend(self) -> dict
def analyze_seasonality(self) -> dict
def analyze_residuals(self) -> dict
def detect_anomalies(self, threshold: float = 2.0) -> pd.DataFrame
# Forecasting
def forecast(self, periods: int, method: str = "trend") -> pd.DataFrame
# Visualization
def plot_components(self, output: str) -> str
def plot_acf_pacf(self, output: str, lags: int = 40) -> str
def plot_seasonal(self, output: str) -> str
# Export
def to_dataframe(self) -> pd.DataFrame
def summary(self) -> str
Decomposition Models
Additive Model
Y(t) = Trend(t) + Seasonal(t) + Residual(t)
Best when seasonal variations are roughly constant.
result = decomposer.decompose(period=12, model="additive")
Multiplicative Model
Y(t) = Trend(t) * Seasonal(t) * Residual(t)
Best when seasonal variations scale with the level of the series.
result = decomposer.decompose(period=12, model="multiplicative")
Output Format
Decomposition Result
{
"model": "additive",
"period": 12,
"trend_strength": 0.85, # 0-1, higher = stronger trend
"seasonal_strength": 0.72, # 0-1, higher = stronger seasonality
"components": {
"observed": [...], # Original values
"trend": [...], # Trend component
"seasonal": [...], # Seasonal component
"residual": [...] # Residual component
},
"seasonal_pattern": { # Average seasonal effect by period
1: 0.12,
2: -0.05,
...
},
"statistics": {
"trend_slope": 0.023,
"trend_r_squared": 0.91,
"residual_std": 0.15,
"residual_mean": 0.002
}
}
Trend Analysis
trend_info = decomposer.analyze_trend()
# Returns:
{
"direction": "increasing", # "increasing", "decreasing", "flat"
"slope": 0.023,
"r_squared": 0.91,
"change_points": [ # Detected trend changes
{"index": 24, "date": "2023-01-01", "direction": "up"},
{"index": 48, "date": "2025-01-01", "direction": "down"}
],
"growth_rate": 0.028, # Compound growth rate
"volatility": 0.12
}
Seasonality Analysis
seasonal_info = decomposer.analyze_seasonality()
# Returns:
{
"detected_period": 12,
"strength": 0.72,
"pattern": {
1: {"value": 0.12, "label": "Jan", "rank": 3},
2: {"value": -0.05, "label": "Feb", "rank": 8},
...
},
"peak_period": 12, # Period with highest seasonal effect
"trough_period": 2, # Period with lowest seasonal effect
"seasonal_range": 0.35 # Max - Min seasonal effect
}
Period Detection
Auto-detect the seasonal period:
# Automatic detection using ACF
period = decomposer.detect_period()
print(f"Detected period: {period}")
# Or with decomposition
result = decomposer.decompose() # Auto-detects period
Anomaly Detection
Find outliers in residuals:
anomalies = decomposer.detect_anomalies(threshold=2.0)
# Returns DataFrame with anomalous points:
# date value residual zscore anomaly_type
# 0 2023-03-15 1250.5 450.2 3.2 high
# 1 2023-08-22 320.1 -380.5 -2.8 low
Basic Forecasting
# Trend extrapolation
forecast = decomposer.forecast(periods=12, method="trend")
# Seasonal naive (last season's values)
forecast = decomposer.forecast(periods=12, method="seasonal_naive")
# Trend + Seasonal
forecast = decomposer.forecast(periods=12, method="combined")
# Returns:
# date forecast lower_bound upper_bound
# 0 2024-01-01 1050.2 920.5 1180.0
# 1 2024-02-01 1080.5 945.2 1215.8
Visualization
Component Plot
decomposer.plot_components("components.png")
Generates a 4-panel plot:
- Original series
- Trend
- Seasonal
- Residuals
ACF/PACF Plot
decomposer.plot_acf_pacf("acf_pacf.png", lags=40)
Autocorrelation and partial autocorrelation functions.
Seasonal Plot
decomposer.plot_seasonal("seasonal.png")
Bar chart of seasonal effects by period.
Example Workflows
Sales Analysis
decomposer = TimeSeriesDecomposer()
decomposer.load_csv("monthly_sales.csv", "month", "revenue")
# Auto-detect and decompose
result = decomposer.decompose()
# Understand patterns
print(f"Trend: {decomposer.analyze_trend()['direction']}")
print(f"Peak season: Month {decomposer.analyze_seasonality()['peak_period']}")
# Plot
decomposer.plot_components("sales_analysis.png")
Anomaly Detection
decomposer = TimeSeriesDecomposer()
decomposer.load_csv("daily_metrics.csv", "date", "pageviews")
decomposer.decompose(period=7) # Weekly pattern
# Find unusual days
anomalies = decomposer.detect_anomalies(threshold=2.5)
print(f"Found {len(anomalies)} anomalous days")
Forecasting with Seasonality
decomposer = TimeSeriesDecomposer()
decomposer.load_csv("quarterly_data.csv", "quarter", "value")
decomposer.decompose(period=4, model="multiplicative")
# Forecast next year
forecast = decomposer.forecast(periods=4, method="combined")
print(forecast)
Dependencies
- pandas>=2.0.0
- numpy>=1.24.0
- scipy>=1.10.0
- statsmodels>=0.14.0
- matplotlib>=3.7.0