Claude Code Plugins

Community-maintained marketplace

Feedback

time-series-decomposer

@dkyazzentwatwa/chatgpt-skills
3
0

Decompose time series into trend, seasonal, and residual components. Use for forecasting, pattern analysis, and seasonality detection.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name time-series-decomposer
description Decompose time series into trend, seasonal, and residual components. Use for forecasting, pattern analysis, and seasonality detection.

Time Series Decomposer

Extract trend, seasonal, and residual components from time series data with visualization and basic forecasting.

Features

  • Decomposition: Additive and multiplicative models
  • Trend Extraction: Moving averages, polynomial fitting
  • Seasonality Detection: Auto-detect and extract periodic patterns
  • Residual Analysis: Identify anomalies in residuals
  • Visualization: Component plots, ACF/PACF
  • Basic Forecasting: Trend extrapolation, seasonal naive

Quick Start

from ts_decomposer import TimeSeriesDecomposer

decomposer = TimeSeriesDecomposer()
decomposer.load_csv("sales.csv", date_col="date", value_col="revenue")

# Decompose
result = decomposer.decompose(period=12)  # Monthly seasonality

print(f"Trend strength: {result['trend_strength']:.2f}")
print(f"Seasonal strength: {result['seasonal_strength']:.2f}")

# Plot components
decomposer.plot_components("decomposition.png")

CLI Usage

# Basic decomposition
python ts_decomposer.py --input data.csv --date date --value sales --period 12

# Multiplicative model
python ts_decomposer.py --input data.csv --date date --value sales --period 12 --model multiplicative

# With forecast
python ts_decomposer.py --input data.csv --date date --value sales --period 12 --forecast 6

# Auto-detect period
python ts_decomposer.py --input data.csv --date date --value sales --auto-period

# Generate plots
python ts_decomposer.py --input data.csv --date date --value sales --period 12 --plot components.png

# Output JSON
python ts_decomposer.py --input data.csv --date date --value sales --period 12 --json

API Reference

TimeSeriesDecomposer Class

class TimeSeriesDecomposer:
    def __init__(self)

    # Data loading
    def load_csv(self, filepath: str, date_col: str, value_col: str,
                date_format: str = None) -> 'TimeSeriesDecomposer'
    def load_series(self, series: pd.Series) -> 'TimeSeriesDecomposer'
    def load_dataframe(self, df: pd.DataFrame, date_col: str,
                      value_col: str) -> 'TimeSeriesDecomposer'

    # Decomposition
    def decompose(self, period: int = None, model: str = "additive") -> dict
    def detect_period(self) -> int
    def extract_trend(self, method: str = "moving_average",
                     window: int = None) -> pd.Series
    def extract_seasonal(self, period: int) -> pd.Series

    # Analysis
    def analyze_trend(self) -> dict
    def analyze_seasonality(self) -> dict
    def analyze_residuals(self) -> dict
    def detect_anomalies(self, threshold: float = 2.0) -> pd.DataFrame

    # Forecasting
    def forecast(self, periods: int, method: str = "trend") -> pd.DataFrame

    # Visualization
    def plot_components(self, output: str) -> str
    def plot_acf_pacf(self, output: str, lags: int = 40) -> str
    def plot_seasonal(self, output: str) -> str

    # Export
    def to_dataframe(self) -> pd.DataFrame
    def summary(self) -> str

Decomposition Models

Additive Model

Y(t) = Trend(t) + Seasonal(t) + Residual(t)

Best when seasonal variations are roughly constant.

result = decomposer.decompose(period=12, model="additive")

Multiplicative Model

Y(t) = Trend(t) * Seasonal(t) * Residual(t)

Best when seasonal variations scale with the level of the series.

result = decomposer.decompose(period=12, model="multiplicative")

Output Format

Decomposition Result

{
    "model": "additive",
    "period": 12,
    "trend_strength": 0.85,      # 0-1, higher = stronger trend
    "seasonal_strength": 0.72,   # 0-1, higher = stronger seasonality
    "components": {
        "observed": [...],       # Original values
        "trend": [...],          # Trend component
        "seasonal": [...],       # Seasonal component
        "residual": [...]        # Residual component
    },
    "seasonal_pattern": {        # Average seasonal effect by period
        1: 0.12,
        2: -0.05,
        ...
    },
    "statistics": {
        "trend_slope": 0.023,
        "trend_r_squared": 0.91,
        "residual_std": 0.15,
        "residual_mean": 0.002
    }
}

Trend Analysis

trend_info = decomposer.analyze_trend()

# Returns:
{
    "direction": "increasing",   # "increasing", "decreasing", "flat"
    "slope": 0.023,
    "r_squared": 0.91,
    "change_points": [           # Detected trend changes
        {"index": 24, "date": "2023-01-01", "direction": "up"},
        {"index": 48, "date": "2025-01-01", "direction": "down"}
    ],
    "growth_rate": 0.028,        # Compound growth rate
    "volatility": 0.12
}

Seasonality Analysis

seasonal_info = decomposer.analyze_seasonality()

# Returns:
{
    "detected_period": 12,
    "strength": 0.72,
    "pattern": {
        1: {"value": 0.12, "label": "Jan", "rank": 3},
        2: {"value": -0.05, "label": "Feb", "rank": 8},
        ...
    },
    "peak_period": 12,           # Period with highest seasonal effect
    "trough_period": 2,          # Period with lowest seasonal effect
    "seasonal_range": 0.35       # Max - Min seasonal effect
}

Period Detection

Auto-detect the seasonal period:

# Automatic detection using ACF
period = decomposer.detect_period()
print(f"Detected period: {period}")

# Or with decomposition
result = decomposer.decompose()  # Auto-detects period

Anomaly Detection

Find outliers in residuals:

anomalies = decomposer.detect_anomalies(threshold=2.0)

# Returns DataFrame with anomalous points:
#    date        value    residual    zscore    anomaly_type
# 0  2023-03-15  1250.5   450.2       3.2       high
# 1  2023-08-22  320.1    -380.5      -2.8      low

Basic Forecasting

# Trend extrapolation
forecast = decomposer.forecast(periods=12, method="trend")

# Seasonal naive (last season's values)
forecast = decomposer.forecast(periods=12, method="seasonal_naive")

# Trend + Seasonal
forecast = decomposer.forecast(periods=12, method="combined")

# Returns:
#    date        forecast    lower_bound    upper_bound
# 0  2024-01-01  1050.2      920.5          1180.0
# 1  2024-02-01  1080.5      945.2          1215.8

Visualization

Component Plot

decomposer.plot_components("components.png")

Generates a 4-panel plot:

  1. Original series
  2. Trend
  3. Seasonal
  4. Residuals

ACF/PACF Plot

decomposer.plot_acf_pacf("acf_pacf.png", lags=40)

Autocorrelation and partial autocorrelation functions.

Seasonal Plot

decomposer.plot_seasonal("seasonal.png")

Bar chart of seasonal effects by period.

Example Workflows

Sales Analysis

decomposer = TimeSeriesDecomposer()
decomposer.load_csv("monthly_sales.csv", "month", "revenue")

# Auto-detect and decompose
result = decomposer.decompose()

# Understand patterns
print(f"Trend: {decomposer.analyze_trend()['direction']}")
print(f"Peak season: Month {decomposer.analyze_seasonality()['peak_period']}")

# Plot
decomposer.plot_components("sales_analysis.png")

Anomaly Detection

decomposer = TimeSeriesDecomposer()
decomposer.load_csv("daily_metrics.csv", "date", "pageviews")
decomposer.decompose(period=7)  # Weekly pattern

# Find unusual days
anomalies = decomposer.detect_anomalies(threshold=2.5)
print(f"Found {len(anomalies)} anomalous days")

Forecasting with Seasonality

decomposer = TimeSeriesDecomposer()
decomposer.load_csv("quarterly_data.csv", "quarter", "value")
decomposer.decompose(period=4, model="multiplicative")

# Forecast next year
forecast = decomposer.forecast(periods=4, method="combined")
print(forecast)

Dependencies

  • pandas>=2.0.0
  • numpy>=1.24.0
  • scipy>=1.10.0
  • statsmodels>=0.14.0
  • matplotlib>=3.7.0