Claude Code Plugins

Community-maintained marketplace

Feedback

Generate AI content (images, videos, audio) using YAML pipelines with 28+ models. Run tests, estimate costs, and manage outputs.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name AI Content Pipeline
description Generate AI content (images, videos, audio) using YAML pipelines with 28+ models. Run tests, estimate costs, and manage outputs.
dependencies python>=3.8

AI Content Pipeline Skill

This skill helps you work with the AI Content Pipeline - a unified Python package for multi-modal AI content generation.

Quick Reference Commands

Pipeline Execution

# Activate virtual environment first
source venv/bin/activate  # Linux/Mac
venv\Scripts\activate     # Windows

# Run a pipeline from YAML config
ai-content-pipeline run-chain --config input/pipelines/config.yaml

# Run with parallel execution (2-3x faster)
PIPELINE_PARALLEL_ENABLED=true ai-content-pipeline run-chain --config config.yaml

# Use short alias
aicp run-chain --config config.yaml

Single Operations

# Generate a single image
ai-content-pipeline generate-image --text "A beautiful sunset" --model flux_dev

# Create video from text (text -> image -> video)
ai-content-pipeline create-video --text "A beautiful sunset"

# List all available models
ai-content-pipeline list-models

Testing

# Quick smoke tests (30 seconds)
python tests/test_core.py

# Full integration tests (2-3 minutes)
python tests/test_integration.py

# Run all tests
python tests/run_all_tests.py

# Quick test mode
python tests/run_all_tests.py --quick

Available AI Models (28 Total)

Text-to-Image (4 models)

Model Key Description
FLUX.1 Dev flux_dev Highest quality, 12B parameters
FLUX.1 Schnell flux_schnell Fastest inference
Imagen 4 imagen_4 Google's photorealistic model
Seedream v3 seedream_v3 Multilingual support

Image-to-Video (4 models)

Model Key Description
Veo 3 veo_3 Google's latest video model
Veo 2 veo_2 Previous generation Veo
Hailuo hailuo MiniMax video generation
Kling kling High-quality video synthesis

Image-to-Image (6 models)

  • Photon Flash, Photon Base, FLUX variants, Clarity Upscaler

Image Understanding (7 models)

  • Gemini variants for description, classification, OCR, Q&A

Prompt Generation (5 models)

  • OpenRouter models for video prompt optimization

YAML Pipeline Configuration

Create a pipeline config file in input/pipelines/:

name: "My Content Pipeline"
description: "Generate image and convert to video"

steps:
  - name: "generate_image"
    type: "text-to-image"
    model: "flux_dev"
    params:
      prompt: "A majestic mountain landscape at sunset"
      width: 1920
      height: 1080

  - name: "create_video"
    type: "image-to-video"
    model: "veo_3"
    params:
      image: "{{step_1.output}}"
      prompt: "Camera slowly pans across the landscape"
      duration: 5

Parameter Templating

Use {{step_N.output}} to reference outputs from previous steps.

Cost Estimation

Typical costs per operation:

  • Text-to-Image: $0.001-0.004 per image
  • Image-to-Image: $0.01-0.05 per modification
  • Image-to-Video: $0.08-6.00 per video (model dependent)

Always estimate before large pipelines:

ai-content-pipeline estimate --config config.yaml

Environment Setup

Required environment variables in .env:

FAL_KEY=your_fal_api_key
PROJECT_ID=your-gcp-project-id
OUTPUT_BUCKET_PATH=gs://your-bucket/output/
ELEVENLABS_API_KEY=your_elevenlabs_key
OPENROUTER_API_KEY=your_openrouter_key
GEMINI_API_KEY=your_gemini_key

Project Structure

ai-content-pipeline/
├── packages/
│   ├── core/ai_content_pipeline/    # Main pipeline
│   ├── providers/                   # Google Veo, FAL AI
│   └── services/                    # TTS, video tools
├── input/                           # Pipeline configs
├── output/                          # Generated content
└── tests/                           # Test suites

Common Tasks

Creating a New Pipeline

  1. Create YAML config in input/pipelines/
  2. Define steps with model and parameters
  3. Use {{step_N.output}} for chaining
  4. Run with aicp run-chain --config your_config.yaml

Adding a New Model

  1. Check packages/providers/ for the provider
  2. Implement model interface
  3. Register in model registry
  4. Add to list-models output

Debugging Pipeline Issues

  1. Run with verbose logging
  2. Check output/ for intermediate files
  3. Verify API keys in .env
  4. Test individual steps manually