| name | AI Content Pipeline |
| description | Generate AI content (images, videos, audio) using YAML pipelines with 28+ models. Run tests, estimate costs, and manage outputs. |
| dependencies | python>=3.8 |
AI Content Pipeline Skill
This skill helps you work with the AI Content Pipeline - a unified Python package for multi-modal AI content generation.
Quick Reference Commands
Pipeline Execution
# Activate virtual environment first
source venv/bin/activate # Linux/Mac
venv\Scripts\activate # Windows
# Run a pipeline from YAML config
ai-content-pipeline run-chain --config input/pipelines/config.yaml
# Run with parallel execution (2-3x faster)
PIPELINE_PARALLEL_ENABLED=true ai-content-pipeline run-chain --config config.yaml
# Use short alias
aicp run-chain --config config.yaml
Single Operations
# Generate a single image
ai-content-pipeline generate-image --text "A beautiful sunset" --model flux_dev
# Create video from text (text -> image -> video)
ai-content-pipeline create-video --text "A beautiful sunset"
# List all available models
ai-content-pipeline list-models
Testing
# Quick smoke tests (30 seconds)
python tests/test_core.py
# Full integration tests (2-3 minutes)
python tests/test_integration.py
# Run all tests
python tests/run_all_tests.py
# Quick test mode
python tests/run_all_tests.py --quick
Available AI Models (28 Total)
Text-to-Image (4 models)
| Model | Key | Description |
|---|---|---|
| FLUX.1 Dev | flux_dev |
Highest quality, 12B parameters |
| FLUX.1 Schnell | flux_schnell |
Fastest inference |
| Imagen 4 | imagen_4 |
Google's photorealistic model |
| Seedream v3 | seedream_v3 |
Multilingual support |
Image-to-Video (4 models)
| Model | Key | Description |
|---|---|---|
| Veo 3 | veo_3 |
Google's latest video model |
| Veo 2 | veo_2 |
Previous generation Veo |
| Hailuo | hailuo |
MiniMax video generation |
| Kling | kling |
High-quality video synthesis |
Image-to-Image (6 models)
- Photon Flash, Photon Base, FLUX variants, Clarity Upscaler
Image Understanding (7 models)
- Gemini variants for description, classification, OCR, Q&A
Prompt Generation (5 models)
- OpenRouter models for video prompt optimization
YAML Pipeline Configuration
Create a pipeline config file in input/pipelines/:
name: "My Content Pipeline"
description: "Generate image and convert to video"
steps:
- name: "generate_image"
type: "text-to-image"
model: "flux_dev"
params:
prompt: "A majestic mountain landscape at sunset"
width: 1920
height: 1080
- name: "create_video"
type: "image-to-video"
model: "veo_3"
params:
image: "{{step_1.output}}"
prompt: "Camera slowly pans across the landscape"
duration: 5
Parameter Templating
Use {{step_N.output}} to reference outputs from previous steps.
Cost Estimation
Typical costs per operation:
- Text-to-Image: $0.001-0.004 per image
- Image-to-Image: $0.01-0.05 per modification
- Image-to-Video: $0.08-6.00 per video (model dependent)
Always estimate before large pipelines:
ai-content-pipeline estimate --config config.yaml
Environment Setup
Required environment variables in .env:
FAL_KEY=your_fal_api_key
PROJECT_ID=your-gcp-project-id
OUTPUT_BUCKET_PATH=gs://your-bucket/output/
ELEVENLABS_API_KEY=your_elevenlabs_key
OPENROUTER_API_KEY=your_openrouter_key
GEMINI_API_KEY=your_gemini_key
Project Structure
ai-content-pipeline/
├── packages/
│ ├── core/ai_content_pipeline/ # Main pipeline
│ ├── providers/ # Google Veo, FAL AI
│ └── services/ # TTS, video tools
├── input/ # Pipeline configs
├── output/ # Generated content
└── tests/ # Test suites
Common Tasks
Creating a New Pipeline
- Create YAML config in
input/pipelines/ - Define steps with model and parameters
- Use
{{step_N.output}}for chaining - Run with
aicp run-chain --config your_config.yaml
Adding a New Model
- Check
packages/providers/for the provider - Implement model interface
- Register in model registry
- Add to list-models output
Debugging Pipeline Issues
- Run with verbose logging
- Check
output/for intermediate files - Verify API keys in
.env - Test individual steps manually