| name | twilio-voice |
| description | Comprehensive Twilio Voice API assistance with AI integration patterns |
Twilio Voice Skill
Comprehensive assistance for building voice applications with Twilio Voice API, including AI-powered voice assistants, ConversationRelay integrations, and production-ready implementation patterns.
When to Use This Skill
This skill should be triggered when:
Core Voice Development:
- Implementing Twilio Voice API integrations
- Building interactive voice response (IVR) systems
- Debugging Twilio voice applications
- Working with TwiML (Twilio Markup Language)
- Setting up voice webhooks and call routing
AI-Powered Voice Applications:
- Building conversational AI voice assistants
- Integrating Twilio with LLMs (OpenAI, Langflow, etc.)
- Implementing real-time bidirectional voice streaming with OpenAI Realtime API
- Creating voice-based customer service automation
- Developing natural language phone interactions
- Building function-calling voice agents with tool invocation
- Implementing low-latency streaming responses (~1 second)
- Managing conversation context and multi-turn dialogues
Advanced Features:
- Working with ConversationRelay for real-time AI conversations
- Implementing voice streaming with low latency
- Building voice applications with function calling
- Managing conversation context and memory
- Handling interruptions and turn-taking in voice conversations
Conversational Intelligence & Analytics:
- Analyzing call transcripts for business insights
- Implementing sentiment analysis and intent detection
- Building compliance monitoring systems
- Tracking AI agent performance metrics
- Creating custom language operators for business logic
- Extracting structured data from voice conversations
- Monitoring lead generation and customer satisfaction
Quick Reference
Common Patterns
1. ConversationRelay Integration
// Real-time AI voice conversation setup
app.post('/voice', (req, res) => {
const twiml = new VoiceResponse();
const connect = twiml.connect();
connect.conversationRelay({
url: 'wss://your-app.ngrok.io/ws',
voice: 'Polly.Joanna',
language: 'en-US'
});
res.type('text/xml');
res.send(twiml.toString());
});
2. Langflow + Twilio Integration
// Forward transcriptions to Langflow for AI processing
conversationRelay.on('transcription', async (data) => {
const response = await fetch(`${LANGFLOW_URL}/api/v1/run/${FLOW_ID}`, {
method: 'POST',
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${LANGFLOW_API_KEY}`
},
body: JSON.stringify({
message: data.text,
session_id: data.callSid
})
});
const aiResponse = await response.json();
conversationRelay.say(aiResponse.message);
});
3. Voice-Optimized Prompts
// Best practices for AI voice responses
const systemPrompt = `
You are a helpful voice assistant. Follow these guidelines:
- Answer carefully and concisely (2-3 sentences max)
- Spell out ALL numbers (say "twenty-three" not "23")
- NO emojis, bullet points, or special symbols
- Use natural conversational language
- Avoid markdown or formatting
- Keep responses under 30 seconds when spoken
`;
4. Webhook Configuration
// Basic Twilio webhook handler
app.post('/twiml', (req, res) => {
const twiml = new VoiceResponse();
twiml.say({
voice: 'Polly.Joanna'
}, 'Hello! How can I help you today?');
twiml.gather({
input: 'speech',
action: '/process-speech',
timeout: 3
});
res.type('text/xml');
res.send(twiml.toString());
});
5. Development Setup with ngrok
# Expose local server for Twilio webhooks
ngrok http 3000
# Configure Twilio phone number webhook URL:
# https://your-subdomain.ngrok.io/voice
6. Conversational Intelligence Analysis
# Analyze call recordings with Conversational Intelligence
from twilio.rest import Client
client = Client(account_sid, auth_token)
# Create Intelligence Service (one-time setup)
service = client.intelligence.v2.services.create(
auto_transcribe=True,
unique_name='customer-service-analysis'
)
# Create transcript from call recording
transcript = client.intelligence.v2.transcripts.create(
service_sid=service.sid,
channel={
'media_properties': {
'source_sid': 'REXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # Recording SID
}
}
)
# Attach language operators for business insights
sentiment_op = client.intelligence.v2 \
.services(service.sid) \
.operators.create(
operator_type='sentiment-analysis',
config={'language_code': 'en-US'}
)
# Retrieve analyzed results
results = client.intelligence.v2 \
.transcripts(transcript.sid) \
.operator_results.list()
for result in results:
print(f"Operator: {result.operator_type}")
print(f"Results: {result.extract_match}")
7. Real-Time Conversation Monitoring
# Monitor ConversationRelay AI agents in real-time
from twilio.rest import Client
client = Client(account_sid, auth_token)
# Create transcript from active ConversationRelay call
transcript = client.intelligence.v2.transcripts.create(
service_sid='GAxxxxx',
channel={
'media_properties': {
'source_sid': 'CA xxxx', # Active Call SID
'participant_label': 'ai_agent'
}
}
)
# Access real-time transcription
sentences = client.intelligence.v2 \
.transcripts(transcript.sid) \
.sentences.list()
for sentence in sentences:
print(f"[{sentence.participant_label}]: {sentence.transcript}")
print(f"Confidence: {sentence.confidence}")
8. Custom Language Operators
# Create custom operators for business-specific analysis
from twilio.rest import Client
client = Client(account_sid, auth_token)
# Generative Custom Operator using LLM (public beta)
custom_op = client.intelligence.v2 \
.services(service_sid) \
.operators.create(
operator_type='custom-operator',
config={
'name': 'lead-qualification',
'description': 'Extract lead qualification criteria',
'prompt': '''
Analyze this conversation and extract:
1. Customer budget range
2. Timeline for decision
3. Decision maker status
4. Pain points mentioned
Return as JSON.
''',
'language_code': 'en-US'
}
)
# Pre-built Language Operator for PII detection
pii_op = client.intelligence.v2 \
.services(service_sid) \
.operators.create(
operator_type='pii-detection',
config={
'redact': True,
'pii_types': ['ssn', 'credit_card', 'email']
}
)
9. OpenAI Realtime API Integration
# Bidirectional voice streaming with OpenAI Realtime API
import asyncio
import websockets
import json
from twilio.twiml.voice_response import VoiceResponse, Connect
@app.route('/incoming-call', methods=['POST'])
def handle_incoming_call():
"""Initiate call with Media Streams"""
response = VoiceResponse()
connect = response.connect()
connect.stream(url=f'wss://{SERVER_DOMAIN}/media-stream')
return str(response)
async def handle_media_stream(websocket):
"""Relay audio between Twilio and OpenAI Realtime API"""
async with websockets.connect(
'wss://api.openai.com/v1/realtime?model=gpt-4o-realtime-preview-2024-10-01',
extra_headers={
"Authorization": f"Bearer {OPENAI_API_KEY}",
"OpenAI-Beta": "realtime=v1"
}
) as openai_ws:
# Configure session with interruption handling
session_update = {
"type": "session.update",
"session": {
"turn_detection": {"type": "server_vad"},
"input_audio_format": "g711_ulaw",
"output_audio_format": "g711_ulaw"
}
}
await openai_ws.send(json.dumps(session_update))
# Relay audio bidirectionally
async def twilio_receiver():
async for message in websocket:
data = json.loads(message)
if data['event'] == 'media':
# Forward audio to OpenAI
audio_append = {
"type": "input_audio_buffer.append",
"audio": data['media']['payload']
}
await openai_ws.send(json.dumps(audio_append))
async def openai_receiver():
async for message in openai_ws:
response = json.loads(message)
# Handle interruptions
if response['type'] == 'input_audio_buffer.speech_started':
# User started speaking - truncate AI response
await openai_ws.send(json.dumps({
"type": "conversation.item.truncate",
"item_id": current_item_id
}))
# Clear Twilio audio queue
await websocket.send(json.dumps({"event": "clear"}))
# Forward AI audio to Twilio
elif response['type'] == 'response.audio.delta':
await websocket.send(json.dumps({
"event": "media",
"media": {"payload": response['delta']}
}))
await asyncio.gather(twilio_receiver(), openai_receiver())
10. Function-Calling Voice Agent (Call-GPT Pattern)
// Deepgram + GPT-4 with dynamic function calling
const { Deepgram } = require('@deepgram/sdk');
const OpenAI = require('openai');
const deepgram = new Deepgram(process.env.DEEPGRAM_API_KEY);
const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY });
// Define available functions
const functionManifest = [
{
name: 'check_order_status',
description: 'Check the status of a customer order',
parameters: {
type: 'object',
properties: {
order_id: { type: 'string', description: 'Order ID' }
},
required: ['order_id']
}
}
];
let userContext = []; // Conversation history
async function handleMediaStream(connection) {
// Set up Deepgram transcription
const dgConnection = deepgram.transcription.live({
model: 'nova-2',
language: 'en-US',
smart_format: true
});
dgConnection.on('transcript', async (data) => {
const transcript = data.channel.alternatives[0].transcript;
if (!transcript) return;
// Add user message to context
userContext.push({ role: 'user', content: transcript });
// Stream GPT response with function calling
const stream = await openai.chat.completions.create({
model: 'gpt-4',
messages: userContext,
tools: functionManifest.map(fn => ({ type: 'function', function: fn })),
stream: true
});
let responseText = '';
let functionCall = null;
for await (const chunk of stream) {
const delta = chunk.choices[0]?.delta;
// Handle function calls
if (delta.tool_calls) {
functionCall = delta.tool_calls[0].function;
if (functionCall.name) {
// Execute function
const result = await executeFuncti on(
functionCall.name,
JSON.parse(functionCall.arguments)
);
// Add function result to context
userContext.push({
role: 'function',
name: functionCall.name,
content: JSON.stringify(result)
});
// Get follow-up response
const followUp = await openai.chat.completions.create({
model: 'gpt-4',
messages: userContext
});
responseText = followUp.choices[0].message.content;
}
}
// Handle text deltas
else if (delta.content) {
responseText += delta.content;
// Use bullet points for natural breaking
if (delta.content.includes('•')) {
await synthesizeAndPlay(responseText, connection);
responseText = '';
}
}
}
// Synthesize remaining text
if (responseText) {
await synthesizeAndPlay(responseText, connection);
}
// Add assistant response to context
userContext.push({ role: 'assistant', content: responseText });
});
// Forward Twilio audio to Deepgram
connection.on('media', (msg) => {
dgConnection.send(Buffer.from(msg.media.payload, 'base64'));
});
}
async function synthesizeAndPlay(text, connection) {
// Use Deepgram TTS for low latency
const audio = await deepgram.speak.request(
{ text },
{
model: 'aura-asteria-en',
encoding: 'mulaw',
sample_rate: 8000
}
);
// Stream to Twilio
connection.send({
event: 'media',
media: { payload: audio.toString('base64') }
});
}
async function executeFunction(name, args) {
// Dynamically require and execute function
const fn = require(`./functions/${name}`);
return await fn(args);
}
11. Low-Latency Streaming with Interruptions
// Optimized streaming pattern for <1 second responses
const systemPrompt = `You are a helpful voice assistant.
Keep responses very concise (1-2 sentences).
Use • bullets to break responses into natural chunks.
Ask only ONE question at a time.
Be conversational and friendly.`;
let isAssistantSpeaking = false;
let currentStreamId = null;
async function streamGPTResponse(userMessage, connection) {
const stream = await openai.chat.completions.create({
model: 'gpt-4',
messages: [
{ role: 'system', content: systemPrompt },
...userContext,
{ role: 'user', content: userMessage }
],
stream: true,
max_tokens: 100, // Limit for voice responses
temperature: 0.7
});
currentStreamId = generateId();
isAssistantSpeaking = true;
let buffer = '';
for await (const chunk of stream) {
const content = chunk.choices[0]?.delta?.content;
if (!content) continue;
buffer += content;
// Stream on sentence boundaries or bullet points
if (content.match(/[.!?•]/)) {
if (!isAssistantSpeaking) break; // Interrupted
await synthesizeAndPlay(buffer.trim(), connection, currentStreamId);
buffer = '';
}
}
// Flush remaining buffer
if (buffer.trim() && isAssistantSpeaking) {
await synthesizeAndPlay(buffer.trim(), connection, currentStreamId);
}
isAssistantSpeaking = false;
}
// Handle user interruptions
deepgram.on('speech_started', () => {
if (isAssistantSpeaking) {
isAssistantSpeaking = false; // Stop streaming
connection.send({ event: 'clear' }); // Clear Twilio queue
currentStreamId = null;
}
});
Integration Patterns
AI Voice Assistant Architecture
┌─────────────┐ ┌──────────────┐ ┌────────────┐
│ Phone │ ──────> │ Twilio │ ──────> │ Your │
│ Caller │ │ Voice │ │ Server │
│ │ <────── │ +Conversation│ <────── │ (Node.js) │
└─────────────┘ │ Relay │ └────────────┘
└──────────────┘ │
│
┌──────────────┐ │
│ AI Service │ <─────────────┘
│ (OpenAI/ │
│ Langflow) │
└──────────────┘
Flow:
- Caller dials Twilio number
- Twilio webhook triggers your server's
/voiceendpoint - Server responds with TwiML including ConversationRelay
- ConversationRelay establishes WebSocket for bidirectional audio
- Audio transcribed and sent to AI service
- AI response synthesized and streamed back to caller
Common Use Cases
Customer Service Automation
// Route calls based on intent
const intentRouter = {
'billing': handleBillingInquiry,
'support': handleTechnicalSupport,
'sales': transferToSales
};
conversationRelay.on('transcription', async (data) => {
const intent = await detectIntent(data.text);
await intentRouter[intent](data);
});
Voice-Based IVR with Natural Language
// Replace traditional touch-tone IVR
twiml.gather({
input: 'speech',
hints: 'billing, support, sales, account',
speechTimeout: 'auto'
}).say('How can I help you today?');
Appointment Scheduling by Voice
// Extract structured data from conversation
const extractAppointment = async (transcript) => {
const prompt = `Extract appointment details: ${transcript}
Return JSON: { date, time, service }`;
const response = await openai.chat.completions.create({
model: 'gpt-4',
messages: [{ role: 'user', content: prompt }]
});
return JSON.parse(response.choices[0].message.content);
};
Conversational Intelligence for Business Insights
# Complete workflow: Call → Analysis → Business Action
from twilio.rest import Client
client = Client(account_sid, auth_token)
# 1. Create Intelligence Service for your use case
service = client.intelligence.v2.services.create(
auto_transcribe=True,
unique_name='sales-call-analysis',
auto_redaction=True # Automatically redact PII
)
# 2. Attach business-relevant operators
operators = [
# Sentiment tracking
{'type': 'sentiment-analysis', 'config': {'language_code': 'en-US'}},
# Intent detection
{'type': 'intent-detection', 'config': {'intents': ['purchase', 'cancel', 'complain']}},
# Custom lead scoring
{
'type': 'custom-operator',
'config': {
'name': 'lead-score',
'prompt': 'Rate this lead 1-10 based on budget, timeline, and authority. Explain reasoning.',
'language_code': 'en-US'
}
}
]
for op in operators:
client.intelligence.v2 \
.services(service.sid) \
.operators.create(operator_type=op['type'], config=op['config'])
# 3. Process call recording
def analyze_call(recording_sid):
transcript = client.intelligence.v2.transcripts.create(
service_sid=service.sid,
channel={'media_properties': {'source_sid': recording_sid}}
)
# Wait for processing (async in production)
import time
time.sleep(10)
# 4. Retrieve insights
results = client.intelligence.v2 \
.transcripts(transcript.sid) \
.operator_results.list()
insights = {}
for result in results:
insights[result.operator_type] = result.extract_match
# 5. Take business action
if insights.get('lead-score', {}).get('score', 0) >= 8:
# High-value lead - alert sales team
send_slack_notification(f"Hot lead detected! Score: {insights['lead-score']}")
if insights.get('sentiment', {}).get('score', 0) < 0.3:
# Negative sentiment - trigger retention workflow
create_support_ticket(transcript.sid, priority='high')
return insights
# Use with Twilio Voice webhook
@app.route('/call-completed', methods=['POST'])
def handle_call_completed():
recording_sid = request.form.get('RecordingSid')
insights = analyze_call(recording_sid)
# Store in CRM, analytics platform, etc.
store_call_insights(insights)
return '', 200
Compliance Monitoring with Auto-Redaction
# Monitor calls for compliance and automatically redact PII
from twilio.rest import Client
client = Client(account_sid, auth_token)
# Create compliance-focused service
compliance_service = client.intelligence.v2.services.create(
auto_transcribe=True,
unique_name='compliance-monitoring',
auto_redaction=True,
data_logging=False # Don't log to Twilio for regulated industries
)
# Attach compliance operators
compliance_ops = [
# PII detection and redaction
{
'type': 'pii-detection',
'config': {
'redact': True,
'pii_types': ['ssn', 'credit_card', 'bank_account', 'email', 'phone']
}
},
# Custom compliance checker
{
'type': 'custom-operator',
'config': {
'name': 'tcpa-compliance',
'prompt': '''
Check if this call follows TCPA compliance:
1. Was consent obtained before marketing?
2. Was opt-out option provided?
3. Was call within allowed hours?
Return: {compliant: true/false, violations: []}
''',
'language_code': 'en-US'
}
}
]
for op in compliance_ops:
client.intelligence.v2 \
.services(compliance_service.sid) \
.operators.create(operator_type=op['type'], config=op['config'])
# Access redacted transcripts (PII removed)
transcript = client.intelligence.v2 \
.transcripts(transcript_sid) \
.fetch()
print(f"Redacted transcript: {transcript.redacted_transcript}")
print(f"PII detected: {transcript.pii_matches}")
Prerequisites
Twilio Account Setup
- Twilio account with phone number
- ConversationRelay enabled in console (for AI voice assistants)
- Conversational Intelligence enabled (for call analysis)
- Account SID and Auth Token
- Voice-enabled phone number
Development Environment
# Required packages
npm install twilio express dotenv
# For AI integration
npm install openai # OpenAI Chat Completions or Realtime API
# OR configure Langflow endpoint
# For Deepgram STT/TTS (Call-GPT pattern)
npm install @deepgram/sdk
# For OpenAI Realtime API (Python)
pip install websockets openai
# For Conversational Intelligence (Python)
pip install twilio
# For local development
npm install -g ngrok # Webhook tunneling
Environment Variables
# .env file
TWILIO_ACCOUNT_SID=ACxxxxxxxxxxxxx
TWILIO_AUTH_TOKEN=your_auth_token
TWILIO_PHONE_NUMBER=+1234567890
# For AI integration
OPENAI_API_KEY=sk-xxxxxxxxxxxxx # Chat Completions or Realtime API
# OR
LANGFLOW_URL=http://localhost:7860
LANGFLOW_FLOW_ID=your-flow-id
LANGFLOW_API_KEY=your-api-key
# For Deepgram (STT/TTS)
DEEPGRAM_API_KEY=your_deepgram_api_key
# For Conversational Intelligence
TWILIO_INTELLIGENCE_SERVICE_SID=GAxxxxxxxxxxxxx # Created via API
# Server configuration
PORT=3000
SERVER_DOMAIN=your-subdomain.ngrok.io # For OpenAI Realtime API
NGROK_URL=https://your-subdomain.ngrok.io
Twilio Console Configuration
- Navigate to Phone Numbers → Active Numbers
- Select your voice-enabled number
- Configure Voice & Fax:
- A CALL COMES IN: Webhook →
https://your-ngrok-url.ngrok.io/voice - HTTP Method: POST
- A CALL COMES IN: Webhook →
- Save configuration
Reference Files
This skill includes comprehensive documentation in references/:
- other.md - Core Twilio Voice documentation
- integration-patterns.md - AI integration examples (see assets/)
- best-practices.md - Voice-optimized development patterns
Use view to read specific reference files when detailed information is needed.
Best Practices
Voice-Optimized AI Responses
- Keep responses concise - 2-3 sentences maximum
- Spell out numbers - Say "twenty-three" not "23"
- Avoid special characters - No emojis, bullets, or markdown
- Use natural language - Conversational, not formal documentation
- Time-bound responses - Aim for < 30 seconds when spoken
- Provide clear next steps - "Would you like me to..." patterns
Error Handling
// Graceful degradation for voice applications
conversationRelay.on('error', (error) => {
console.error('ConversationRelay error:', error);
// Fallback to simple IVR
const twiml = new VoiceResponse();
twiml.say('I apologize, but I\'m having trouble right now.');
twiml.redirect('/fallback-menu');
res.type('text/xml').send(twiml.toString());
});
Security Considerations
// Validate Twilio requests
const twilio = require('twilio');
app.post('/voice', (req, res) => {
const twilioSignature = req.headers['x-twilio-signature'];
const url = `https://${req.hostname}${req.url}`;
if (!twilio.validateRequest(
process.env.TWILIO_AUTH_TOKEN,
twilioSignature,
url,
req.body
)) {
return res.status(403).send('Forbidden');
}
// Process validated request
// ...
});
Performance Optimization
- Use streaming mode for lower latency AI responses
- Implement timeouts to prevent hung connections
- Cache common responses for frequently asked questions
- Monitor call quality metrics via Twilio Console
Working with This Skill
For Beginners
- Start with basic webhook implementation (Pattern #4)
- Test with ngrok tunneling (Pattern #5)
- Experiment with voice-optimized prompts (Pattern #3)
- Review prerequisites and environment setup
For AI Integration
- Choose your AI service (OpenAI, Langflow, or custom LLM)
- Implement ConversationRelay pattern (#1 or #2)
- Apply voice-optimization best practices
- Test conversation flow and interruption handling
For Production Deployment
- Move from ngrok to production server with SSL
- Implement request validation and security measures
- Set up monitoring and error tracking
- Configure scaling for call volume
- Test fallback mechanisms
Resources
references/
Organized documentation extracted from official sources:
- llms.md - Twilio Voice API overview and core concepts
- other.md - Additional documentation and guides
- index.md - Quick navigation index
assets/
Example implementations and templates (added from real-world integrations):
- langflow-integration.js - Complete Langflow + Twilio example
- openai-integration.js - OpenAI + Twilio Voice assistant
- voice-prompts.md - Collection of voice-optimized system prompts
- .env.example - Environment variable template
scripts/
Helper utilities for development:
- test-webhook.js - Local webhook testing utility
- validate-setup.js - Verify Twilio configuration
Example Projects
- langflow-twilio-voice: https://github.com/langflow-ai/langflow-twilio-voice
- cr-demo: https://github.com/robinske/cr-demo
- speech-assistant-openai-realtime: https://github.com/twilio-samples/speech-assistant-openai-realtime-api-python
- call-gpt: https://github.com/twilio-labs/call-gpt
Notes
Skill Enhancement History
- v1.0 - Auto-generated from Twilio Voice documentation (llms.txt)
- v1.1 - Enhanced with AI integration patterns from production implementations:
- ConversationRelay integration patterns
- Langflow + Twilio Voice workflow
- OpenAI + Twilio Voice integration
- Voice-optimized prompting best practices
- Real-world use cases and examples
- Security and performance guidelines
- v1.2 - Added Conversational Intelligence capabilities:
- Call transcript analysis and insights extraction
- Sentiment analysis and intent detection
- Custom language operators for business logic
- Real-time conversation monitoring
- Compliance monitoring with PII redaction
- Business intelligence workflows (lead scoring, compliance)
- Python SDK examples for Intelligence API
- v1.3 - Added advanced voice AI patterns from Twilio sample repos:
- OpenAI Realtime API bidirectional audio streaming
- Native interruption handling with speech detection
- Deepgram STT/TTS integration for low latency (~1 second)
- Function-calling voice agents with dynamic tool invocation
- Conversation context management with userContext pattern
- Streaming response optimization with bullet-point breaking
- Complete async websocket relay architecture
- Production-ready function manifest patterns
Knowledge Sources
- Official Documentation: Twilio Voice API (llms.txt extraction)
- Production Patterns: langflow-ai/langflow-twilio-voice repository
- Implementation Examples: robinske/cr-demo repository
- Best Practices: Voice-optimized AI response guidelines
- Conversational Intelligence: Official Twilio Intelligence API documentation
- OpenAI Realtime API: twilio-samples/speech-assistant-openai-realtime-api-python
- Function Calling Patterns: twilio-labs/call-gpt repository
Quality Status
- Content Coverage: Comprehensive (basic API + AI integrations + analytics + realtime streaming)
- Code Examples: Production-ready patterns included (11 complete code patterns)
- Use Cases: Customer service, IVR, appointments, voice assistants, business intelligence, function-calling agents
- Integration Support: Langflow, OpenAI (Chat + Realtime API), Deepgram, Conversational Intelligence API
- Architecture Patterns: ConversationRelay, Realtime API websockets, STT/TTS pipelines, function calling
Updating
To refresh this skill with updated documentation:
- API docs: Re-run
/create-skill --url https://www.twilio.com/docs/voice --name twilio-voice - Integration patterns: Review referenced GitHub repositories for updates
- Best practices: Monitor Twilio blog and community discussions
- AI enhancements: Track ConversationRelay feature releases